

Undergraduate Texts in Mathematics

Editors

S. Axler
F.W. Gehring
K.A. Ribet

Paul Cull Mary Flahive
Robby Robson

Difference Equations

From Rabbits to Chaos

With 16 Illustrations

Paul Cull
Dept. Computer Science
Dearborn Hall
Oregon State University
Corvallis, OR 97331
USA
pc@cs.orst.edu

Mary Flahive
Dept. Mathematics
Kidder Hall
Oregon State University
Corvallis, OR 97331
USA
flahive@math.orst.edu

Robby Robson
Eduworks
3520 Northwest
Hayes Ave.

Corvallis, OR 97330
USA
rrobson@eduworks.
com

Editorial Board

S. Axler
Mathematics Department
San Francisco State
University

San Francisco, CA 94132
USA

F.W. Gehring
Mathematics Department
East Hall
University of Michigan
Ann Arbor, MI 48109
USA

K.A. Ribet
Department of
Mathematics

University of California
at Berkeley

Berkeley, CA 94720-3840
USA

Mathematics Subject Classification (2000): 39-01, 39Axx, 68Rxx, 11B37, 11B39

Library of Congress Cataloging-in-Publication Data
Cull, Paul, 1943–

Difference equations: from rabbits to chaos / Paul Cull, Mary Flahive,
Robby Robson.

p. cm. — (Undergraduate texts in mathematics)
Includes bibliographical references and index.
ISBN 0-387-23234-6 (alk. paper)
1. Difference equations. I. Flahive, Mary E., 1948– II. Title. III. Series.

QA431.C85 2004
515′.625—dc22 2004058968

ISBN 0-387-23234-6 (softcover) Printed on acid-free paper.
ISBN 0-387-23233-8 (hard cover)

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connec-
tion with reviews or scholarly analysis. Use in connection with any form of informa-
tion storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (EB)

9 8 7 6 5 4 3 2 1 SPIN 10950852 (softcover) SPIN 10967645 (hardcover)

springeronline.com

Preface

Some years ago we noticed that various seemingly disparate fields were
using similar models and techniques to solve similar problems. From math-
ematics to computer science to engineering to biology, various forms of dif-
ference equations were appearing in research papers and in textbooks, but
with no common background, the same results were being independently
derived over and over again. As we were noticing this, some mathematics
curricula were being revised with discrete mathematics replacing calculus
as the first college mathematics course. New discrete mathematics courses
were created, and several superb textbooks appeared. In some fields a year
of discrete mathematics actually replaced a year of calculus, while in other
fields students took both discrete mathematics and calculus.

With these changes, what happened to difference equations? Some texts
in discrete mathematics ignored them. Others had a few examples of dif-
ference equations as applications of proof by induction. Still others de-
voted a chapter to difference equations, but only solved a few special cases
and/or represented generating functions (also called Z-transforms) as the
principal or only method for finding solutions. With this lack of common
background, texts on algorithms, signal processing, and population biology
were still forced to devote chapters to the difference equations used in their
areas. Even students who took several of these courses had difficulty seeing
that they were working with the same difference equations in different con-
texts. Many instructors had written notes to flesh out the coverage given in
texts, but such notes were of necessity usually so terse that students were
led to believe that difference equations were very complicated and hard to
understand.

vi Preface

With these problems in mind, we set out to write a book on difference
equations that is accessible to undergraduates. As a text, it is meant for
undergraduate majors in one of the mathematical sciences, presumably in
their junior or senior year. We’ve written it for the student who likes to
compute and is comfortable with mathematical proof, but the book can
be profitably read by students who approach the subject from either a
computational or theoretical point of view.

We wanted our text to have an algorithmic spirit. In this book, each
chapter leads to techniques that can be applied by hand to small examples
and also can be programmed for larger examples. In many cases we give
explicit algorithms, which we decided to write in pseudocode rather than
in a specific programming language for several reasons. First, it is easy
to translate from pseudocode into any reasonable programming language.
Second, there are many programming languages available, and translating
from one language to another is often more difficult than translating from
pseudocode. Third, we are not sure that programming these algorithms is
worth the effort, because for almost all of our examples there are high-
quality implementations readily available on the Web. It probably makes
more sense to use one of these programs rather than to cobble together a
program that will be used only a few times and/or will be prone to problems
when the input is not exactly in the form assumed by the programmer. A
number of mathematically oriented computer packages are also available.
For example, MATLAB, Maple, and Mathematica all have packages that
will solve difference equations and recurrence relations. In many cases these
packages give numeric answers as well as symbolic solutions when possible.
Using these packages is much simpler than programming from scratch.

In this book we start with the old story of Fibonacci’s rabbits and
progress through several generalizations, ending with some nonlinear differ-
ence equations. We deal with familiar mathematical structures such as the
real numbers, the complex numbers, the integers, and the integers modulo
an integer. We were tempted to discuss more general structures in order to
show, for example, how theories of computation could be represented as dif-
ference equations, but we soon discovered that this would result in either a
very large book or a very formal book, which would be at variance with our
goal of accessibility. After developing the theory and techniques for solving
linear difference equations in Chapters 2 to 4, we specialize to equations
with nonnegative coefficients in Chapters 5 and 6 and then consider the
generalization to matrix difference equations in Chapter 7. Chapter 8 con-
siders equations over other rings, including integers modulo m and finite
fields. Chapter 9 considers some issues in computational complexity, includ-
ing divide-and-conquer algorithms. We end with some nonlinear systems in
Chapter 10. Along the way we use linear algebra, develop formal power
series, solve some combinatorial problems, visit Perron–Frobinus theory,
use graph theory, discuss pseudorandom number generation and integer
factorization, and use the FFT to multiply polynomials quickly.

Computation vii

There are four appendices serving different purposes. The first is a collec-
tion of worked examples, which are meant to supplement the early chapters
of the book. Because the material in Appendices B and C is essential to
an understanding of the book, we suggest working through them before
beginning Chapter 2. Although many of the difference equations we con-
sider have integer or real coefficients, it is often necessary to consider the
coefficients as complex numbers. Appendix B gives the highlights of the
complex analysis we use, and no prior experience is necessary to under-
stand this appendix. On the other hand, only the most exceptional student
could learn new material at the rate at which linear algebra is presented in
Appendix C. One of the aims of this book is to show students that linear
algebra is a powerful and coherent subject whose ideas have diverse appli-
cations, and we hope Appendix C is a helpful review. Appendix D outlines
a method of Morris Marden [105] that can be used to decide when the
general solution of a difference equation converges to zero. This appendix
is not needed for an understanding of the book.

Computation

Most of our examples work with “small” difference equations, equations
that can be completely solved by hand. In particular, for these equations
their characteristic polynomials can be found, the roots of these polyno-
mials can be computed exactly, and the associated eigenvector equations
can be solved. While the theory we develop applies to both small and
large equations, these computations may be difficult or impossible for large
equations. For example, actually factoring polynomials is not possible in
general, and rational computation of characteristic polynomials may re-
quire numbers with very many digits. Numerical approximation methods
are often used for these computations, and we refer the interested reader
to Acton [1], who gives a good introduction to numerical methods. (More
serious users might refer to the compendium [131] or to the classic [170] by
Wilkinson.) In general, we do not cover numerical methods. The one excep-
tion to this rule is our discussion of the use of Newton’s method for finding
the positive root of a nonnegative polynomial. We include this method for
several reasons: it rapidly finds this root, the proof of its convergence and
its speed of convergence are relatively easy, and the method is an example
of a commonly encountered nonlinear difference equation.

viii Preface

Notational Preliminaries

In this book, we use the following fairly standard notation:

Z is the set of integers.
Zm is the set of integers modulo m.

Zk is the set of all k-tuples with integer coordinates.

Zk
m is the set of all k-tuples of integers modulo m.

N is the set of natural numbers, including 0; N = {0, 1, 2, . . .}.
N+ is the set of positive integers.
Q is the set of rational numbers.
R is the set of real numbers.
F denotes a finite field.
C is the set of complex numbers.
R[x] is the set of polynomials with real coefficients.
C[x] is the set of polynomials with complex coefficients.
Zm[x] is the set of polynomials whose coefficients are integers modulo m.
F[x] is the set of polynomials with coefficients from the finite field F.

�x� is the floor of x ∈ R, the largest integer n with n ≤ x.
�x� is the ceiling of x ∈ R, the smallest integer n with n ≥ x .
k (mod m) means the equivalence class {k + jm : j ∈ Z }, while
k mod m means the least nonnegative integer in the class k (mod m) .

Contents

Preface v
Computation . vii
Notational Preliminaries . viii

1 Fibonacci Numbers 1
1.1 The Rabbit Problem . 1
1.2 The Fibonacci Sequence . 2

1.2.1 Computing Fibonacci numbers 4
1.2.2 A formula for the Fibonacci numbers 5
1.2.3 Further Fibonacci facts 6

1.3 Notation for Asymptotic Analysis 6
1.4 Exercises . 7

2 Homogeneous Linear Recurrence Relations 11
2.1 The Solution Space of (HL) 12
2.2 The Matrix Form . 15
2.3 A Simpler Basis for the Solution Space 17

2.3.1 Distinct eigenvalues 19
2.3.2 Repeated eigenvalues 21

2.4 The Asymptotic Behavior of Solutions 25
2.5 Exercises . 28

3 Finite Difference Equations 33
3.1 Linear Difference Equations 33

x Contents

3.1.1 First–order equations 34
3.2 General and Particular Solutions 36

3.2.1 Finding a particular solution via summation 39
3.3 A Special Class of Linear Recurrences 41
3.4 Operator Notation . 45
3.5 The Shift Operator on the Space of Sequences 47
3.6 Formal Power Series . 50

3.6.1 Formal differentiation 55
3.6.2 An application of formal power series 56

3.7 Exercises . 58

4 Generating Functions 67
4.1 Counting Strings with Some Restrictions 67
4.2 An Overview of the Generating Function Technique 70

4.2.1 Rational representation 75
4.3 A Review of Partial Fractions 76
4.4 Examples of the Generating Function Technique 82

4.4.1 The Catalan numbers 83
4.4.2 Stirling numbers of the second kind 85

4.5 Reversion of Generating Functions 87
4.5.1 Using the Fourier Transform 91

4.6 Exercises . 94

5 Nonnegative Difference Equations 101
5.1 Nonnegative Polynomials 102

5.1.1 The dominant root 102
5.2 When are integer solutions rounded powers of an eigenvalue? 106

5.2.1 Using the Rounding Theorem 110
5.3 Estimation of the Roots . 113

5.3.1 Estimation of the dominant root 113
5.3.2 Estimation of the second root 113

5.4 Calculation of the Roots . 116
5.4.1 The rate of convergence in Newton’s method 121

5.5 Asymptotic Size of Solutions 125
5.5.1 Homogeneous nonnegative recurrences 125
5.5.2 Nonhomogeneous nonnegative equations 127

5.6 Exercises . 132

6 Leslie’s Population Matrix Model 137
6.1 Leslie’s Model . 137

6.1.1 How to tell whether a Leslie matrix is primitive . . . 141
6.2 Leslie’s Convergence Theorem 142
6.3 Imprimitive Leslie Matrices 144

6.3.1 A simple example 144
6.3.2 A special case: Only one positive fertility rate 145

Contents xi

6.3.3 Asymptotically periodic Leslie matrices 145
6.4 Companion Matrices . 147

6.4.1 Matrices with repeated eigenvalues 155
6.5 Nonnegative Companion Matrices 157

6.5.1 Periodic nonnegative companion matrices 159
6.6 Back to Leslie Matrices . 164

6.6.1 Periodic Leslie matrices 165
6.6.2 Averaging . 168

6.7 The Limiting Effect of L on Nonnegative Vectors 169
6.7.1 The period of the total population 171

6.8 Afterword . 173
6.9 Exercises . 174

7 Matrix Difference Equations 179
7.1 Homogeneous Matrix Equations 179
7.2 Nonnegative Matrix Equations 186

7.2.1 Applications to Markov chains 187
7.3 Graphs and Matrices . 189

7.3.1 Next node representation 193
7.3.2 Comments on imprimitivity 194

7.4 Algorithms for Primitivity 198
7.4.1 Algorithm I . 198
7.4.2 Algorithm II . 202

7.5 Matrix Difference Equations with Input 206
7.5.1 Reduction to one dimension 207
7.5.2 Reduction to homogeneous form 211

7.6 Exercises . 212

8 Modular Recurrences 217
8.1 Periodicity . 218

8.1.1 Periodicity of linear modular recurrences 221
8.1.2 Fast modular computations 224

8.2 Finite Fields . 225
8.3 Periods of First–Order Modular Recurrences 227

8.3.1 First–order modular recurrences with maximal period 230
8.4 Periodic Second–Order Modular Recurrences 232

8.4.1 Periods of modular Fibonacci sequences 233
8.5 Applications . 238

8.5.1 Application 1: Pseudorandom number generation . . 238
8.5.2 Application 2: Integer factorization 242

8.6 Exercises . 246

9 Computational Complexity 253
9.1 Analysis of Algorithms . 254

9.1.1 Measuring run time 254

xii Contents

9.1.2 An example: The Towers of Hanoi puzzle 256
9.2 Computer Arithmetic . 261

9.2.1 Addition and subtraction 262
9.2.2 Multiplication and division 262

9.3 An Introduction to Divide-and-Conquer 263
9.3.1 Example: Polynomial multiplication 264

9.4 Simple Divide-and-Conquer Algorithms 268
9.4.1 Example 1: A return to polynomial multiplication . 270
9.4.2 Example 2: Matrix multiplication 271
9.4.3 Example 3: MERGESORT 272
9.4.4 Example 4: Applications of Newton’s method 273

9.5 The Fast Fourier Transform 274
9.5.1 The general form of the Fast Fourier Transform . . . 276
9.5.2 The FFT when n = 2k 277
9.5.3 Fast evaluation and fast interpolation 280
9.5.4 The fast polynomial multiplication algorithm 281

9.6 Average Case Analysis . 284
9.6.1 The LARGETWO algorithm 284
9.6.2 The QUICKSORT algorithm 286

9.7 Exercises . 289

10 Some Nonlinear Recurrences 297
10.1 Some Examples . 297
10.2 Nonlinear Systems . 299

10.2.1 Sarkovskii’s Theorem 302
10.3 Chaos . 303

10.3.1 A simple chaotic system 303
10.4 Local Stability . 307

10.4.1 Local stability of a fixed point 307
10.4.2 Local stability of a cycle 308
10.4.3 Local stability in two dimensions 310

10.5 Global Stability . 313
10.5.1 Staircase convergence 314
10.5.2 Nonmonotonic convergence 315

10.6 Linear Fractional Recurrences 317
10.6.1 Asymptotic behavior 318
10.6.2 Rational coefficients and periodicity 322
10.6.3 Chaotic-like behavior 324
10.6.4 Invariant distributions 326
10.6.5 Proving global stability 330
10.6.6 Summary . 331

10.7 Conclusion . 332
10.8 Exercises . 333

A Worked Examples 337

Contents xiii

A.1 All Simple Roots . 337
A.2 One Multiple Root . 342
A.3 One Multiple Root, Several Simple Roots 345
A.4 The Input is γn

1 p1(n) + γn
2 p2(n) 346

B Complex Numbers 347

C Highlights of Linear Algebra 353
C.1 Vector Spaces and Subspaces 353
C.2 Linear Independence and Basis 354
C.3 Linear Transformations . 355
C.4 Eigenvectors . 356
C.5 Characteristic and Minimal Polynomials 358
C.6 Exercises . 359

D Roots in the Unit Circle 361
D.1 Marden’s Method . 362
D.2 Exercises . 367

References 369

Index 381

1
Fibonacci Numbers

This chapter is devoted to the Fibonacci numbers. We start with the famil-
iar definition, move on to some more sophisticated points of view, and then
formulate some questions that are typical of those that can be addressed
using the material of this book.

1.1 The Rabbit Problem

In the year 1202 the Italian mathematician Leonardo Pisano (which means
Leonardo of Pisa) published Liber Abaci,1 a book of problems whose pur-
pose was to illustrate the usefulness of Arabic numerals in arithmetic com-
putations because at that time cumbersome Roman numerals were still
being used in Italy. One of the problems discussed in Pisano’s book consid-
ers pairs of breeding rabbits. Each pair of rabbits matures in two months
and produces one new pair each month thereafter, beginning with the last
day of its second month. Starting with a single infant pair born at the be-
ginning of Month 0, how many pairs will there be one year after this pair
begins breeding? We can find our way to a solution by considering what
happens in the first few months:

1. At the end of Month 0 there is only one pair, and they are not yet
breeding.

1The book was reprinted in 1857–1862 by Baldassarre Boncompagni [11]. A transla-
tion by L. Sigler [147] has recently been published by Springer-Verlag.

2 1. Fibonacci Numbers

2. At the end of Month 1 the first pair gives birth to a second pair.

3. At the end of Month 2 the second pair is one month old and not yet
breeding. The first pair produces another pair, giving three pairs at
the end of Month 2.

4. By the end of Month 3, the first pair has produced yet another pair,
and the second pair has given birth to its first progeny. Therefore,
there are five pairs at the end of Month 3.

5. For Month 4, the two new pairs born the previous month are not
bearing young, but all three older pairs give birth to one new pair.
Eight pairs are alive at the end of Month 4.

We observe that at the end of the nth month each pair that was alive
at the (n − 2)nd month has given birth to a new pair during the month.
Therefore, the total number of pairs alive at the end of the nth month is
the number from the (n− 1)st month plus one new pair for every pair that
was alive at the end of the (n− 2)nd month. In other words, the number of
rabbit pairs at the end of n months is the sum of the numbers at the end
of the two previous months.

The numbers generated by this most famous example of a recurrence re-
lation (which we often simply call a “recurrence”) are called the Fibonacci
numbers, because Pisano is usually referred to as Fibonacci, which means
son of Bonaccio. These Fibonacci numbers are given by the sequence

1, 2, 3, 5, 8, . . . ,

whose first two terms are 1, 2 and each subsequent term is the sum of the
preceding two terms. The Rabbit Problem asks for the thirteenth element
of this sequence, which is the number 377. If we are asked for the number of
rabbits after one thousand months, could we compute the 1001st Fibonacci
number without computing all 1000 numbers that came before? Exam-
ination of some slightly more sophisticated ways to view the Fibonacci
numbers will provide an answer to this question.

1.2 The Fibonacci Sequence

In calculus we often think of a function such as f(x) = x2 as a simpler
object than an infinite sequence, but a sequence s0, s1, s2, . . . of complex
numbers is really just a function

s : N → C ,

where sn is the value of the function s at n. In this book we will denote
elements of sequences by using subscripts and use 〈sn〉 as shorthand for

1.2 The Fibonacci Sequence 3

the entire sequence. We will also define a sequence by giving its “generic
term,” so 〈n2〉 is the sequence 〈sn〉 with sn = n2 for all n ∈ N.

We will slightly modify the Fibonacci sequence, and from now on define
the first two Fibonacci numbers to be 0 and 1, while each subsequent
Fibonacci number is still the sum of its two immediate predecessors. Such
a rule, which defines the elements of a sequence by a formula involving
some fixed number (in this case two) of preceding elements, is called a
recurrence relation. The Fibonacci sequence is defined by the linear
recurrence

f0 = 0, f1 = 1,(1.1)
fn+2 = fn+1 + fn .(1.2)

The recurrence itself is (1.2), and the two values given in (1.1) are called
the initial conditions. The system (1.2) and (1.1) is referred to as an
initial value problem. The equation in (1.2) is called linear because the
terms of the sequence are connected in a linear manner, using only linear
combinations of previous elements of the sequence. (In general, scaling by
real or complex constants is allowed.)

As we said above, it’s often helpful to think of a sequence as a function
f defined on the set of natural numbers N. The Fibonacci sequence is the
function f(n) = fn with

f(0) = 0, f(1) = 1(1.3)
f(n + 2) = f(n + 1) + f(n).(1.4)

Here we begin the sequence at the position f(0) because verifying and
developing formulas is often easier when we initialize with f(0) rather than
with f(1).

When we define the Fibonacci sequence it’s customary to think of the
index n in (1.2) and (1.4) as a natural number, but there’s no purely math-
ematical reason to limit ourselves to nonnegative n. From any two con-
secutive Fibonacci numbers the recurrence (1.2) allows us to compute the
preceding element of the Fibonacci sequence using fn = fn+2−fn+1. There-
fore, we can proceed backwards as well as forwards, and any integer can
be used as an index. Some “center” terms of the associated doubly infinite
Fibonacci sequence are

. . . ,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8,

(Exercise 1.6 asks you to verify this pattern.) Extending recurrences to in-
clude negative indices can have some advantages, sometimes giving a deeper
insight into the theory. It’s especially helpful for modeling population dy-
namics and other time-dependent phenomena.

4 1. Fibonacci Numbers

1.2.1 Computing Fibonacci numbers

The definition of the Fibonacci function given in (1.4) is called a recursive
definition. It allows us to write a short recursive computer program to
compute (at least in theory) the value of the Fibonacci function at any
given nonnegative n.

PROCEDURE RECRFIB(n,f) (* Input n, Output f(n) *)
IF n ≤ 1

THEN f := n
ELSE RECRFIB(n− 1,g)

RECRFIB(n− 2,h)
f := g + h

Another style of program for computing f(n) for nonnegative n is given by

PROCEDURE FIB(n,f) (* Input n, Output f(n) *)
IF n ≤ 1 THEN f := n

ELSE f := 1
FOR i := 2 TO n

t := f
f := f + j
j := t

ENDFOR

The first procedure, RECRFIB, computes values of the Fibonacci function
by making calls to itself. Such a program is usually called recursive. Pro-
gram FIB does not call on itself, but computes by repeatedly executing the
statements in the FOR loop. Such a program is usually called iterative.

Once we know some program that computes a given function, it is natural
to ask for a program that computes the function rapidly. Finding such
a program is not as easy as it sounds. For instance, for the Fibonacci
function, we might want to know how quickly we can produce a single term
f(n) in terms of the size of the input n, or we might want to know how
quickly we can compute all of the first n terms of the Fibonacci sequence in
terms of the input size. Or we might want to answer these same questions
in the context of constraints on the size of the memory of the computer

1.2 The Fibonacci Sequence 5

used for the computation. These may be realistic or simply theoretical
constraints. More effective procedures for computing Fibonacci numbers
are given in [40].

1.2.2 A formula for the Fibonacci numbers

Although the defining recurrence (1.2) theoretically allows us to compute
f(n) for any n, it’s not an especially tidy mathematical expression for
f(n), since all previous terms are needed in order to calculate just one
term of the Fibonacci sequence. For example, think about the question of
quickly estimating the number of rabbit pairs after one thousand months
of rabbit breeding. If the function f had a nice formula, it would be easier
to answer such a question. Fortunately, and perhaps surprisingly, there is
such a formula for values of the Fibonacci function:

(1.5) f(n) =
1√
5

[(
1 +

√
5

2

)n

−
(

1 −
√

5
2

)n]
.

You might recognize the number
1 +

√
5

2
; it’s often referred to as the

golden mean or golden section. This formula (1.5) is known as Bi-
net’s Formula and can be derived using the techniques given in the next
chapter (refer to Exercise 2.10). Although it is usually attributed to Jacques
Phillipe Marie Binet (1786–1856), Donald Knuth [88, vol. 1, p. 82] says that
Abraham de Moivre reported the formula in 1730 [48, pp. 26–42] when he
considered the general linear recurrence.

For now, we can appreciate the power of Binet’s Formula by using it to
estimate size of the 1000th Fibonacci number. Since

1 +
√

5
2

≈ 1.618 and
1 −

√
5

2
≈ −.618 .

and (.618)1000 is very small, then

f(1000) ≈ 1√
5
(1.618)1000.

If we’re interested in estimating the size of f(1000) in terms of the number
of its decimal digits, we can use the base-10 logarithm. (Refer to Exer-
cise 1.9.) Since

1000 · log(1.618)− .5 log(5) ≈ 208.629,

6 1. Fibonacci Numbers

we expect the number of decimal digits in f(1000) to be about 209. In fact,
the 1000th Fibonacci number is the number

f(1000) = 43466557686937456435688527675040625802564660517371
78040248172908953655541794905189040387984007925516
92959225930803226347752096896232398733224711616429
96440906533187938298969649928516003704476137795166
849228875,

which does have the predicted 209 digits.
With λ0 = 1+

√
5

2 , λ1 = 1−√
5

2 , and α = 1/
√

5, Binet’s Formula can be
rewritten as

f(n) = α(λn
0 − λn

1) .

Since |λ1| < 1 and α < 1/2, then |fn − αλn
0 | = α|λ1|n < 1/2, and the fact

that fn is an integer therefore gives the pleasant identity

(1.6) fn = Round
(
λn

0 /
√

5
)

for all n ≥ 0,

where Round(X) returns the integer nearest to X .2 We analyze this notion
of roundability in Chapter 5. (If you want to look ahead, the main result
is Theorem 5.2.2).

1.2.3 Further Fibonacci facts

The beauty and arcana of Fibonacci numbers are studied in a number of
places. We would be remiss if we did not mention the Fibonacci Quarterly,
a journal that has been publishing for about half a century. One of the
mainstays of this journal was Brother Alfred. His book [16] is a nice in-
troduction to Fibonacci numbers. From the Russian literature, Vorobev’s
book [164] is a concise introduction to Fibonacci facts and formulas. A
more extensive recent book is Fibonacci and Lucas Numbers [90]. For some
of the minor arcana, see our paper [22].

1.3 Notation for Asymptotic Analysis

There are often many algorithms for the same problem. For instance, in
the case of computing Fibonacci numbers we’ve already written two types
of algorithms for computing a specific Fibonacci number, either using the
definition directly or using Binet’s Formula. Our usual method of assess-
ing the efficiency of various algorithms for a problem will be to compare

2Note that Round(k
2
) is not defined when k is an odd integer.

1.4 Exercises 7

their run times, and usually this is done with an asymptotic analysis. For
this there are three standard forms of notation, Big-Oh, Big-Omega,
and Big-Theta. Each notation removes unimportant details so we can see
the size of run time more clearly. This notation was codified for computer
scientists by Donald Knuth [85, 86] in 1976, when he drew upon notation
already used in analytic number theory. Big-Oh3 was introduced by Bach-
mann in 1894, and something very similar to Big-Omega was used by Hardy
and Littlewood in 1914. More information on the history of this notation
(and that of Big-Theta from the 1960s) can be found in Knuth’s article.
Although our principal use of this notation is for positive real numbers, our
definitions allow T (n) to be a complex-valued sequence.

Let T (n) and f(n) be two complex-valued sequences. Then

T (n) = O(f(n)) (we say T (n) has order at most f(n)) means that there
exists a positive constant c such that

|T (n)| ≤ c|f(n)| for all sufficiently large n .

T (n) = Ω(f(n)) (we say T (n) has order at least f(n)) means that there
exists a positive constant c such that

|T (n)| ≥ c|f(n)| for all sufficiently large n .

T (n) = Θ(f(n)) (we say T (n) has order exactly f(n)) means that there
exist positive constants c1, c2 such that

c1|f(n)| ≤ |T (n)| ≤ c2|f(n)| for all sufficiently large n .

For instance, from (1.6) we know that the asymptotic size of fn is Θ(λn
0)

where λ0 = (1+
√

5)/2. To get some practice with this notation, you should
verify that for any fixed pair of positive integers i ≤ j, each of the following
holds:

ni = O(nj), nj = Ω(ni), Θ(ni) = Θ(nj) implies i = j .

1.4 Exercises

Ex 1.1. (Taken from Liber Abaci, pp. 283 ff.) Translate the following:

‘‘Quot paria coniculorum in uno anno ex uno pario germinentur.’’
Qvidam posuit unum par cuniculorum in quodam loco, qui erat

3The term Big-Omicron is used by Knuth, but most other authors call this Big-Oh
notation.

8 1. Fibonacci Numbers

undique pariete circundatus, ut sciret, quot ex eo paria
germinarentur in uno anno: cum natura eorum sit per singulum
mensem aliud par germinare; et in secundo mense ab eorum
natiuitate germinant. Quia suprascriptum par in primo mense
germinat, duplicabis ipsum, erunt paria duo in uno mense.
Ex quibus unum, scilicet primum, in secundo mense germinat; et
sic sunt in secundo mense paria 3; ex quibus in uno mense duo
pregnantur; et germinatur in tercio mense paria 2 conciculorum;
et sic sunt paria 5 in ipso mense;... Cum quibus etiam additis
parijs 144, que germinatur in ultimo mense, erunt paria 377;
et tot paria peperit suprascriptum par in prefato loco in
capite unius anni. ...

Ex 1.2. Let x ∈ R. Let �x� be the floor of x, that is, the largest integer
n such that n ≤ x. Let �x� be the ceiling of x, that is, the least integer n
such that x ≤ n. Show that �x� = �x� iff x ∈ Z.

Ex 1.3. Suppose 〈sn〉 is any sequence that satisfies the Fibonacci recur-
rence (1.2) but possibly has different initial values. Show that for any j,
any term sn can be written as a linear combination of sj , sj−1 with integer
coefficients.

Ex 1.4. Suppose 〈sn〉 is any sequence that satisfies the Fibonacci recur-
rence (1.2) but possibly has different initial values. Let n1, n2 ∈ N be any
fixed indices. Show that any term sn can be written as a linear combination
of sn1 , sn2 with rational coefficients.

Ex 1.5. For the Fibonacci sequence, let n1, n2 ∈ N be any fixed indices
with gcd(n1, n2) = 1. Show that any term fn can be written as a linear
combination of fn1 , fn2 with integer coefficients.

Ex 1.6. Use (1.2) to show that for the Fibonacci function we have

f(−n) = (−1)n+1f(n) for all n ≥ 0.

Ex 1.7. Verify Binet’s Formula (1.5) for f(2), f(3), f(4).

Ex 1.8. Use mathematical induction to prove that every element of the
Fibonacci sequence satisfies Binet’s Formula.

Ex 1.9. Show that the base-10 logarithm of each of the integers 1, 2, . . . , 9
lies in the interval [0, 1), and that the logarithm of any two-digit integer
lies in the interval [1, 2). In general, show the number of decimal digits in
an integer n is the ceiling of its logarithm to the base 10.

Ex 1.10. If the base-10 logarithm of an integer begins with 3.53, how many
digits does the integer have and what’s its first digit?

1.4 Exercises 9

Ex 1.11. This exercise deals with the sequence of Lucas Numbers. 4

Consider the sequence 〈Ln〉 generated by

L0 = 2, L1 = 1,

Ln+2 = Ln+1 + Ln .

(a) Calculate L2, L3, L4.
(b) Find constants A, B ∈ R such that for each of n = 0, 1 it is true that

(1.7) Ln = A

(
1 +

√
5

2

)n

− B

(
1 −

√
5

2

)n

.

(c) Use mathematical induction to prove that your formula in the previ-
ous part holds for all n ≥ 0.

Ex 1.12. (a) Write a short program that computes the Fibonacci and
the Lucas sequences.

(b) Use your program to calculate f30 and L30. Check your answer using

the closed forms in (1.5) and (1.7). Compute the ratio
f30

L30
.

(c) The ratio
fn

Ln
has a limiting value. Use your program to calculate this

value to ten decimal places.

Ex 1.13. For this exercise, consider the sequence 〈sn〉 defined by

s0 = 0, s1 = 1,

sn+2 = 2sn+1 + 2sn .

(a) Calculate the first five terms of the sequence 〈sn〉.
(b) Check that the following formula correctly calculates s2, s3, s4:

sn =
1√
12

[
(1 +

√
3)n − (1 −

√
3)n

]
.

(c) Show that the general nth term of the sequence 〈sn〉 satisfies the
formula in the previous part.

Ex 1.14. Show that the variable t in the procedure FIB can be eliminated
by using f := f + j, j := f − j.

4The French mathematician Édouard Lucas (1842–1891) studied the properties of
this and other sequences in the first volume (page 186) of the American Journal of
Mathematics, which appeared in 1878.

10 1. Fibonacci Numbers

Ex 1.15. Show that every natural number n can be expressed in a “bi-
nary” form n =

∑K
i=2 bifi , where each bi is either 0 or 1 and K depends on

the natural number n. Show further that this binary Fibonacci representa-
tion is NOT unique. If you impose the additional stipulation that no two
consecutive bi are both 1, show that the binary Fibonacci representation is
unique.

Ex 1.16. Define logFIB(n) to equal the least index i for which fi ≥ n.
(a) Calculate some values of logFIB(n).
(b) For each i ≥ 1, define #(i) to be the number of natural numbers n

for which logFIB(n) = i. Show that #(i) = fi for all i ≥ 3.

Ex 1.17. Show that any solution to

sn = sn−1 + �
√

n�

with nonnegative initial conditions satisfies sn = Θ(n3/2).

2
Homogeneous Linear Recurrence
Relations

The simplest type of recurrence relation is the homogeneous linear recur-
rence with constant coefficients, one in which sn+k is given as a linear
function of sn, . . . , sn+k−1. In other words, for all n ≥ 0,

(HL) sn+k = c1sn+k−1 + c2sn+k−2 + · · · + cksn ,

where c1, . . . , ck are complex constants and ck = 0. This is called a kth order
homogeneous linear recurrence with constant coefficients. The purpose of
this chapter is to analyze these recurrences using tools from linear algebra.
Appendix C contains a review of the basic linear algebra that we will assume
here. Even if we were only interested in integer recurrences, we would
still need to consider recurrences whose coefficients are complex numbers
because this is more or less forced on us by the algebra. In addition, more
compact formulas can often be obtained by using more general number
systems.

Equation (HL) with given values s0, . . . , sk−1 is called an initial value
problem. For any set of k initial values, the recurrence (HL) can be succes-
sively applied to compute the infinite sequence 〈sn〉 that satisfies this recur-
rence. From s0, . . . , sk−1 the sk term is specified by sk = c1sk−1+· · ·+cks0,
the sk+1 term by sk+1 = c1sk + · · ·+ cks1, and so on. What this informally
shows is that every initial value problem has a solution, and the solution is
unique. The first k terms determine the rest of the sequence. In Exercise 2.1
we ask you to supply a formal verification of this fact, which is fundamental
to the remainder of this chapter.

12 2. Homogeneous Linear Recurrence Relations

Arithmetic Operations on Sequences
We can add and scale sequences in exactly the same way as functions.
This means that 〈sn〉 + 〈tn〉 = 〈sn + tn〉. Viewed as functions, this is
the rule (s + t)(n) = s(n) + t(n). A sequence is multiplied by the scalar
λ ∈ C using the rule λ(sn) = 〈λsn〉. The set of all functions from N into
C (which is the same as the set of all complex sequences) is a complex
vector space under these operations of addition and scalar multiplication.

2.1 The Solution Space of (HL)

We begin by analyzing the second–order initial value problem

(2.1) sn+2 = 3sn+1 − 2sn , s0 = 2 , s1 = 3,

which generates the sequence

2, 3, 5, 9, 17, 33, 65, 129, 257, 513, . . . ,

and has the closed formula sn = 2n + 1. We might ask what the sequence
looks like under other initial conditions. Here are two such sequences:

2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, . . . ,

3, 1,−3,−11,−27,−59,−123,−251,−507,−1019,

It’s not quite as easy to guess a formula for the nth term of the sequence
starting with 2, 5, but you might be lucky and notice that

23 = 24 − 1 ,

47 = 48 − 1 ,

95 = 96 − 1 ,

and so arrive at the formula sn = 3 · 2n − 1. By thinking negatively, we
can find the formula sn = 5 − 2n+1 for the third set of initial conditions
s0 = 3, s1 = 1. (In Exercise 2.2 you’re asked to prove these formulas by an
inductive argument.) Since we used the same recurrence (2.1) to generate
all three sequences, it’s not surprising that there are similarities among
the formulas. For instance, all three formulas involve powers of 2. One
of our goals is to understand how and why the sequences corresponding to
different initial values are similar. To put this another way, we’re interested
in understanding the structure of the space of all solutions to a fixed kth

order homogeneous linear recurrence when the initial conditions range over
all k-tuples of complex numbers.

Placing this in a more general setting, we’ve observed already that the set
of all complex sequences forms a vector space over C. In Exercise 2.5 you’re
asked to prove that the set of solutions to (HL) is a subspace of the space

2.1 The Solution Space of (HL) 13

of all complex sequences, and this means that every linear combination of
solutions is also a solution. We’ll call this the solution space of (HL)
and will denote it by X .

We’ve seen that any sequence in X is completely determined by its first
k terms. This can be neatly expressed by defining a map π that picks out
these terms and writes them as a vector in Ck. Accordingly, we define

(2.2) π : X → Ck by π(〈sn〉) = (sk−1, . . . , s1, s0)T .

Because every sequence in X has a unique string of k initial elements,
this map is a well-defined function. The fact that any choice of values
s0, . . . , sk−1 can be extended to a infinite sequence that is in X means
that π is an onto function. The companion fact that every initial value
problem has a unique solution translates to the statement that π is a one-
to-one function (that is, if π(x) = π(y) for x, y ∈ X , then x = y). Since
π is one-to-one and onto, it is called a bijection or a bijective function,
and π has a (two-sided) inverse. This inverse is the map that assigns to
any vector α = (αk−1, . . . , α0)T ∈ Ck the unique solution in X that begins
with the initial values

s0 = α0 , s1 = α1 , . . . , sk−1 = αk−1 .

For any two solutions 〈xn〉, 〈yn〉 ∈ X and complex scalars α and β, we
have1

α ∗ π(〈xn〉) + β ∗ π(〈yn〉) = α ∗

⎛⎜⎜⎜⎝
xk−1

...
x1

x0

⎞⎟⎟⎟⎠ + β ∗

⎛⎜⎜⎜⎝
yk−1

...
y1

y0

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
α ∗ xk−1 + β ∗ yk−1

...
α ∗ x1 + β ∗ y1

α ∗ x0 + β ∗ y0

⎞⎟⎟⎟⎠
= π(α ∗ 〈xn〉 + β ∗ 〈yn〉) ,

which shows that π : X → Ck is a linear transformation. Since we’ve
already shown that it is a bijection, π is an invertible transformation that
is often called a vector space isomorphism. From linear algebra we know

1Good notation often leads to seductively simple formulas that can obscure some
important details, so it is good to form the habit of making a mental note of multiple
uses of the same symbol. In this regard, observe that the symbol “+” has three different
meanings in the equation displayed above: first as addition of vectors in Ck, second as
addition of complex numbers, and finally as addition of sequences. Check that you can
also find the three different uses of the symbol “∗”.

14 2. Homogeneous Linear Recurrence Relations

that the inverse of an invertible linear transformation is also linear, and we
obtain the following theorem.

Theorem 2.1.1. Let X be the solution space of a kth order homogeneous
linear recurrence. Then the map π defined in (2.2) is an isomorphism be-
tween the vector spaces X and Ck. In particular, X is a k-dimensional
complex vector space.

Since any element of a vector space is a (unique) linear combination of
basis vectors, Theorem 2.1.1 can be interpreted as giving a method for con-
structing solutions 〈sn〉 ∈ X using the k sequences generated by the basic
initial conditions e1, e2, . . . , en, where ei is the ith standard basis vector
in Ck, the column vector with 1 in the ith position and zeros elsewhere.
The preimage π−1(ei) = 〈sn〉 is the solution whose only non-zero initial
condition is sk−i = 1. Since the set {e1, . . . , ek} is a basis for Ck and π−1 is
an isomorphism, the set {π−1(e1), . . . , π−1(ek)} is a basis for X . Moreover,
for given initial conditions

s0 = α0 , s1 = α1 , . . . , sk−1 = αk−1 ,

the corresponding solution sequence is

α0π
−1(ek) + α1π

−1(e2) + · · · + αk−1π
−1(e1) .

We illustrate this with two examples, the Fibonacci sequence and the re-
currence in (2.1) above.

The Fibonacci numbers enjoy
many special properties that
are not necessarily shared by
all recurrences. For instance,
the sequence π−1(e1) is sim-
ply the shift of the sequence
π−1(e2) one term to the left. It
follows that any sequence 〈sn〉
satisfying the Fibonacci recur-
rence has general term

sn = afn + bfn−1 ,

for a = s1 , b = s0 .

For the Fibonacci recurrence, the ba-
sic sequences are the two sequences

π−1(e1) = 〈0, 1, 1, 2, 3, 5, 8, 13, 21, . . .〉

and

π−1(e2) = 〈1, 0, 1, 1, 2, 3, 5, 8, 13, . . .〉.

If we want to find the sequence gener-
ated by the recurrence

sn+2 = sn+1 + sn , s0 = −1 , s1 = 3 ,

we would add 3 times π−1(e1) to −1
times the sequence π−1(e2), and this
gives −1, 3, 2, 5, 7, 12,

For recurrence (2.1), the basic sequences are

π−1(e1) = 〈0, 1, 3, 7, 15, 31, 63, 127, 255, 511, . . .〉
and

π−1(e2) = 〈1, 0,−2,−6,−14,−30,−62,−126,−254,−510, . . .〉 .

2.2 The Matrix Form 15

Therefore, the ninth term of the solution to (2.1) with s0 = 4, s1 = 11 is

s8 = 4(−254) + 11(255) = 1789 .

To summarize: Knowledge of the basic sequences of a homogeneous linear
recurrence allows us to express the nth term of any solution as a linear com-
bination of simpler quantities, namely, the nth terms of the basic sequences.
Because this procedure uses k basic sequences to find the one sequence of
interest, it isn’t very useful unless formulas for the basic sequences can be
easily obtained. We’d like a basis for X consisting of sequences that are
guaranteed to have an easy-to-find and simple formula for their nth terms.
Obtaining such a basis is the goal of the rest of this chapter.

2.2 The Matrix Form

Since each term of a kth order recurrence is determined by the k preceding
terms, it is useful to think of it as a function on k-tuples of consecutive
terms. Because this function is linear, it can be represented by a matrix.
For example, the recurrence in (2.1) can be written as

(2.3)
(

sn+2

sn+1

)
=

[
3 −2
1 0

](
sn+1

sn

)
,

(
s1

s0

)
=

(
3
2

)
,

while the usual Fibonacci sequence is encoded in the matrix equation

(2.4)
(

fn+2

fn+1

)
=

[
1 1
1 0

](
fn+1

fn

)
,

(
f1

f0

)
=

(
1
0

)
.

In each case the matrix takes us from one pair of consecutive terms to the
next.

In general, we express (HL) in matrix form by introducing the vectors

(2.5) Sn =

⎛⎜⎜⎜⎝
sn+k−1

...
sn+1

sn

⎞⎟⎟⎟⎠ for all n ≥ 0,

and finding a matrix A such that Sn+1 = ASn. Since

sn+k = c1sn+k−1 + c2sn+k−2 + · · · + cksn,

this is accomplished using the matrix

(2.6) A =

⎡⎢⎢⎢⎢⎢⎣
c1 c2 · · · ck−1 ck

1 0 · · · 0 0
0 1 . . . 0
...

. . .
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ ,

16 2. Homogeneous Linear Recurrence Relations

which when applied to Sn shifts the components down one entry and puts
the next term, sn+k, in the first component. The matrix A is called the
companion matrix of the recurrence. It is also referred to as the com-
panion matrix of the polynomial xk − c1x

k−1 − · · · − ck.
When the matrix form is used in an initial value problem, we have

S1 = AS0 , S2 = AS1 = A2S0 , S3 = AS2 = A3S0 , and so on,

and this inductively gives the matrix form

(2.7) Sn = AnS0 .

The matrix form of the usual Fibonacci recurrence is(
fn+1

fn

)
=

[
1 1
1 0

]n (
1
0

)
,

and the matrix form of the recurrence in (2.1) with initial conditions s0 = 2
and s1 = 3 is given by

(2.8) Sn =
[

3 −2
1 0

]n (
3
2

)
.

For the formula in (2.7) to be useful, we must be able to quickly compute
powers of the companion matrix. Matrix powers can be easily computed
for diagonal matrices, and the next easiest are matrices that are diagonal-
izable, namely, square matrices that have a basis of eigenvectors. When
A is not diagonalizable, a modification involving Jordan matrices can be
used. (Refer to Appendix C.)

Returning to the second example above, we set

A =
[

3 −2
1 0

]
,

which has characteristic polynomial

chA(x) = det
([

3 − x −2
1 −x

])
= x2 − 3x + 2 = (x − 2)(x − 1)

and distinct eigenvalues, λ1 = 2 and λ2 = 1. This means that A is diagonal-
izable. To find the eigenvectors, solve (A − 2I)v1 = 0 and (A − 1I)v2 = 0
to obtain

v1 =
(

2
1

)
and v2 =

(
1
1

)
.

Therefore, for

D =
[
2 0
0 1

]
and P =

[
2 1
1 1

]
,

2.3 A Simpler Basis for the Solution Space 17

powers can be computed using

An = (PDP−1)(PDP−1) . . . (PDP−1) = P Dn P−1

=
[
2 1
1 1

] [
2 0
0 1

]n [
2 1
1 1

]−1

=
[
2 1
1 1

] [
2n 0
0 1

] [
1 −1

−1 2

]
=

[
2n+1 − 1 −2n+1 + 2
2n − 1 −2n + 2

]
.

Equation (2.8) therefore becomes

Sn =
[

3 −2
1 0

]n (
3
2

)
=

[
2n+1 − 1 −2n+1 + 2
2n − 1 −2n + 2

](
3
2

)
=

(
2n+1 + 1
2n + 1

)
,

from which we derive sn = 2n+1 for all n ≥ 0. A change of initial conditions
is equivalent to changing the vector S0 = (3, 2)T , and the same procedure
would yield the general term of the sequence generated from those new
initial conditions. In Exercise 2.10 you apply this method to the Fibonacci
sequence.

Our general procedure for the case in which A is diagonalizable can be
summarized as follows:

Let sn+k = c1sn+k−1 + c2sn+k−2 + · · · + cksn and S0 = α. Suppose the
companion matrix A of this recurrence is diagonalizable with eigenvalues
λ1, . . . , λk.

1. Find a basis for Ck consisting of eigenvectors of A.

2. Use the basis elements as columns to form the matrix P .

3. Form the diagonal matrix D with the eigenvalues of A on the diag-
onal, written in the order corresponding to the columns of P .

4. Compute PDnP−1 = An and the vector Anα.

Then the solution is the sequence of first components of the vectors Anα.

2.3 A Simpler Basis for the Solution Space

In the last section the eigenvalues of the companion matrix played a key
role in solving a recurrence. In this section we explore more properties of

18 2. Homogeneous Linear Recurrence Relations

these eigenvalues with the objective of obtaining a helpful basis for the
solution space. We will refer to the polynomial

ch(x) = xk − c1x
k−1 − · · · − ck−1x − ck

as the characteristic polynomial of the recurrence (HL), and its roots
(the eigenvalues of the companion matrix A) will be called the eigenvalues
of the recurrence.

We can obtain an eigenvector associated with an eigenvalue λ of the
recurrence by first reminding ourselves that premultiplying a vector v =
(v1, . . . , vk)T by the companion matrix A shifts its first k − 1 components
down one position and then inserts c1v1 + c2v2 + · · · + ckvk into the first
position. Since λ is an eigenvalue, c1λ

k−1 + c2λ
k−1 + · · ·+ ck = λk, and we

obtain

A(λk−1, λk−2, . . . , λ, 1)T = (λk, λk−1, . . . , λ)T = λ(λk−1, λk−2, . . . , λ, 1)T .

This means that
vλ = (λk−1, λk−2, . . . , λ, 1)T

is an eigenvector associated with λ.

Theorem 2.3.1. Consider the homogeneous recurrence

sn = c1sn−1 − · · · − ck−1sn−k+1 − cksn−k .

(a) If λ is an eigenvalue of the recurrence, then π−1(vλ) = 〈λn〉, where
π is the vector space isomorphism in (2.2). Consequently, 〈λn〉 is in
X .

(b) If the recurrence has k distinct eigenvalues λ1, . . . , λk, then the k
sequences 〈λn

1 〉, . . . , 〈λn
k 〉 form a basis for X , and every solution 〈sn〉

has the form

(2.9) sn = a1λ
n
1 + a2λ

n
2 + · · · + akλn

k

for some constants a1, . . . , ak ∈ C.

Proof. In part (a), for all n ≥ 0 we define sn = λn and the associated
vectors Sn as in (2.5). Then Sn = λnvλ and

ASn = λnAvλ = λn+1vλ = Sn+1 ,

implying 〈sn〉 ∈ X with initial vector S0 = vλ. When the recurrence has
k distinct eigenvalues, the eigenvectors vλi form a basis for Ck, and the
k sequences 〈λn

i 〉 = π−1(vλi) therefore form a basis for X . Since every
element of a vector space can be uniquely written as a linear combination
of basis vectors, this implies that (2.9) does hold.

2.3 A Simpler Basis for the Solution Space 19

2.3.1 Distinct eigenvalues

For a specific vector (s0, s1, . . . , sk−1) = α of initial conditions, how do
we solve the initial value problem, that is, how do we find the ai in (2.9)?
Using the inherent linear algebra and the isomorphism π, this becomes the
equivalent problem of solving

a1vλ1 + · · · + akvλk
= α

for the coefficients a1, . . . , ak. Translating this to a matrix equation, we
want to find (the unique) a1, . . . , ak ∈ C such that

(2.10)

⎡⎢⎢⎢⎣
1 1 1 · · · 1
λ1 λ2 λ3 · · · λk

...
...

...
. . .

...
λk−1

1 λk−1
2 λk−1

3 · · · λk−1
k

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

a1

a2

...
ak

⎞⎟⎟⎟⎠ = α.

The coefficient matrix in (2.10) is called the Vandermonde matrix as-
sociated with λ1, . . . , λk. It is named after Alexandre Vandermonde (1735–
1796), the developer of the modern theory of determinants, and has appli-
cations in almost every area of mathematics. (Consult [82] for an interesting
survey of some of its many applications.) Because each vector of initial con-
ditions specifies an element of X , the system of equations in (2.10) has a
unique solution for each α, and the Vandermonde matrix must always be
invertible.

Let’s look at an example. For c2
1 = −4c2, consider the recurrence

sn+2 = c1sn+1 + c2sn, s0 = α1, s1 = α2 ,

whose characteristic polynomial ch(x) = x2 − c1x − c2 has distinct eigen-
values, since its discriminant D = c2

1 + 4c2 is non-zero. (In Exercise 2.18
you answer the question of what happens when D is zero.) The eigenvalues
of the recurrence are

λ1 = (c1 +
√

D)/2 and λ2 = (c1 −
√

D)/2 ,

with associated Vandermonde matrix

V =
[

1 1
λ1 λ2

]
.

The determinant of this matrix is λ2 − λ1 = −
√

D, which is non-zero. Its
inverse is

V −1 =
1√
D

[
−λ2 1

λ1 −1

]
,

and (
a1

a2

)
= V −1

(
α1

α2

)
=

1√
D

(
−λ2s0 + s1

λ1s0 − s1

)
.

20 2. Homogeneous Linear Recurrence Relations

In general, the inverse of a Vandermonde matrix can be computed fairly
easily. For this, define the auxiliary polynomials

Pi(x) =
k∏

j=1
j �=i

(x − λj) = bi,1 + bi,2x + · · · + bi,kxk−1

for all i = 1, . . . , k. Since the λi are distinct, then Pi(λi) is non-zero for all
i, and for j = i, Pi(λj) = 0.

Theorem 2.3.2. Let B be the k × k matrix whose ith row records the
coefficients of the polynomial Pi(x) written according to increasing powers
of x. Then V −1 equals DB, where D is the diagonal matrix that has the
(non-zero) diagonal entries 1/P1(λ1), . . . , 1/Pk(λk).

Proof. This proof is inspired by a mathematical note of F. D. Parker [124].
The diagonal entries in the matrix product BV have the form

(bi,1, bi,2, . . . , bi,k)(1, λi, . . . , λ
k−1
i)T = Pi(λi) = 0 ,

and the off-diagonal entries are

(bi,1, bi,2, . . . , bi,k)(1, λj , . . . , λ
k−1
j)T = Pi(λj) = 0.

From this we see that DBV is the identity and V −1 = DB, as claimed.

Let’s use this result to find an explicit closed form for the general term
of

sn+2 = sn+1 + 2sn , s0 = 1, s1 = 5.

Since the characteristic polynomial ch(x) = x2 −x− 2 = (x− 2)(x+1) has
roots λ1 = 2, λ2 = −1, then P1(x) = 1 + x , P2(x) = −2 + x give

B =
[

1 1
−2 1

]
,

and from P1(2) = 3, P2(−1) = −3 we have

D =
1
3

[
1 0
0 −1

]
and V −1 =

1
3

[
1 1
2 −1

]
.

Therefore, (
a1

a2

)
= V −1

(
1
5

)
=

1
3

[
1 1
2 −1

](
1
5

)
=

(
2

−1

)
,

and from (2.9),
sn = 2λn

1 − λn
2 = 2n+1 + (−1)n+1 .

2.3 A Simpler Basis for the Solution Space 21

2.3.2 Repeated eigenvalues

In the previous section we showed that the vectors vλ1 , . . . ,vλk
form a

basis for Ck when the eigenvalues are distinct. What happens when the
recurrence has some eigenvalues that are repeated roots of the characteristic
polynomial? The vectors vλi still form a linearly independent set, but the
set is no longer a basis, since it has fewer than k elements. Although we will
do considerably more work to identify enough additional vectors to form
a basis, the actual result (given in Theorem 2.3.6 below) is only slightly
more complicated.

When λ is an eigenvalue of multiplicity m, there exists a polynomial f(x)
with complex coefficients such that

ch(x) = (x − λ)mf(x) , where f(λ) = 0.

Denoting the differentiation operator on the space of polynomials by D, this
implies that the value of Dj(ch(x)) at x = λ equals zero for all 0 ≤ j < m
and is non-zero for j = m. Using the fact that

Dj(xi) =

⎧⎨⎩
i!

(i − j)!
xi−j if j ≤ i ,

0 if j > i ,

in Exercise 2.13 you prove the polynomial identity

(2.11) Dj(xi) = xDj(xi−1) + jDj−1(xi−1) ,

where D0 is the identity operator and the second summand on the right
side should be interpreted as zero when j = 0.

We next construct what are called the cyclic subspaces of Ck. This study
is motivated by another concept in linear algebra, the Rational Canoni-
cal Form, a topic that is more advanced than our review in Appendix C.
Because our description is explicit, what follows can be viewed as an illus-
tration of Rational Canonical Form. You can consult [78, Sections 7.1–7.2]
if you’re interested in more information.

The cyclic subspace corresponding to the eigenvalue λ is defined
to be

(2.12) Xλ = Span{v(0)
λ , . . . ,v(m−1)

λ } ,

and the next result implies that the companion matrix A maps Xλ into
Xλ, which means that A is an operator on the subspace Xλ. This will allow
us to apply the theory of linear algebra to the vector space Xλ.

Proposition 2.3.3. If λ is an eigenvalue of multiplicity m, then

(2.13) Av
(j)
λ = λv

(j)
λ + jv

(j−1)
λ for all 0 ≤ j < m,

22 2. Homogeneous Linear Recurrence Relations

where v
(−1)
λ = 0, v

(0)
λ = vλ, and for all j ≥ 1, v

(j)
λ denotes the element

of Ck obtained by applying Dj to each component of (xk−1, . . . , x, 1)T and
then evaluating each component at x = λ.

Proof. Setting x = (xk−1, . . . , x, 1)T , we will prove

(2.14) ADj(x) = xDj(x) + jDj−1(x) for all j < m ,

which yields (2.13). From the linearity of the operator D we obtain

ADj(x) = Dj(Ax).

Recall that for any vector v, the last k− 1 components of Av are obtained
by shifting down the first k−1 components of v. Also, for any i = 1, the ith

component of ADj(x) is Dj(xk−i+1), which from (2.11) equals xDj(xk−i)+
jDj−1(xk−i). This proves the equality of the last k − 1 components in the
vector equation (2.14).

Now a comparison of the first components. The first component of Ax is

c1x
k−1 + · · · + ck−1x + ck = xk − ch(x),

which implies that the first component of Dj(Ax) is

Dj(xk − ch(x)) = Dj(xk) − Dj(ch(x))

= xDj(xk−1) + jDj−1(xk−1) − Dj(ch(x)),

again from (2.11). Equality of the first components in (2.14) is obtained
from this and the fact that Dj(ch(x)) has value 0 at x = λ.

Theorem 2.3.4. If λ is an eigenvalue of multiplicity m, then (x− λ)m is
the minimal polynomial of the operator A on Xλ, and S = {v(0)

λ , . . . , v
(m−1)
λ }

is a basis for Xλ.

Proof. From the definition of Xλ in (2.12), dim(Xλ) ≤ m and S is a gener-
ating set for Xλ. It suffices to prove dim(Xλ) ≥ m. We do this by showing
that the degree of min(x), the minimal polynomial of A restricted to the
subspace Xλ, equals m. In fact, we prove that min(x) = (x−λ)m. To prove
this we will show that for all 0 ≤ j < m,

(2.15) (A − λI)jv(j)
λ = 0 and (A − λI)mv(j)

λ = 0.

Fix j < m. Then (2.13) can be rewritten in the form

(A − λI)v(j)
λ = jv(j−1)

λ ,

2.3 A Simpler Basis for the Solution Space 23

and repeated use of this gives

(A − λI)jv(j)
λ = (A − λI)j−1((A − λI)v(j)

λ)

= j(A − λI)j−1v(j−1)
λ

= j(A − λI)j−2((A − λI)v(j−1)
λ)

= j(j − 1) · (A − λI)j−2v(j−2)
λ

...

= j! v(0)
λ ,

which means that

(2.16) (A − λI)jv(j)
λ = j! v(0)

λ for all j < m.

Since v(0)
λ is an eigenvector, it is non-zero, and therefore (A − λI)j is not

the zero transformation on Xλ. This proves that the minimal polynomial is
not (x−λ)j for any j < m. On the other hand, from (2.16) we also obtain
for all j = 0, 1, . . . , m − 1,

(A − λI)mv(j)
λ = j! · (A − λI)m−jv(0)

λ

= j! · (A − λI)m−j−1((A − λI)v(0)
λ)

= (A − λI)m−j−10 = 0 ,

since v(0)
λ = vλ is an eigenvector corresponding to λ. Therefore, (A−λI)m

is the zero transformation on the basis {v(0)
λ , . . . ,v(m−1)

λ }, and by linearity,
(A − λI)m must be zero on all of Xλ. This proves min(x) = (x − λ)m.

Corollary 2.3.5. Let λ1, . . . , λt be the different eigenvalues of the recur-
rence, with corresponding multiplicities m1, . . . , mt. Then

(2.17) {v(0)
λ1

, . . . , v
(m1−1)
λ1

, . . . , v
(0)
λt

, . . . , v
(mt−1)
λt

}

is a basis for Ck.

Proof. For each i, let Xi = Xλi and let mini(x) denote the minimal
polynomial of A restricted to Xi. For i = j, Xi ∩ Xj is an A-invariant
subspace whose minimal polynomial divides each of mini(x), minj(x) and
so also divides their greatest common denominator. But λi = λj gives
gcd((x − λi)m, (x − λj)m) = 1, implying min(x) = 1 and Xi ∩ Xj = {0}.
Therefore,

Span(X1 ∪ X2 ∪ · · · ∪ Xt) = Span(X1) ∪ · · · ∪ Span(Xt)
= X1 ∪ X2 ∪ · · · ∪ Xt ,

24 2. Homogeneous Linear Recurrence Relations

giving
dim(X1 ∪ X2 ∪ · · · ∪ Xt) = m1 + · · · + mt,

which does equal k = deg(ch) since the characteristic polynomial is

ch(x) = (x − λ1)m1 · · · (x − λt)mt .

This basis is the simpler one we promised earlier, and using this basis in
Theorem 2.1.1 gives the following result.

Theorem 2.3.6. Let λ1, . . . , λt ∈ C be distinct. Then 〈sn〉 is a solution
to the recurrence (HL) with ch(x) = (x − λ1)m1 · · · (x − λt)mt iff the nth

term of 〈sn〉 has the form

(2.18) sn = a1(n)λn
1 + · · · + at(n)λn

t ,

where each ai(x) is a polynomial whose degree is less than mi.

Proof. In Exercise 2.15 you check that each sequence whose nth term has
the form given in (2.18) satisfies (HL). If {b1, . . . ,bk} is the basis in (2.17),
the fact that π is an isomorphism from X to Ck implies that every solution
to (HL) has the form

(2.19) 〈sn〉 = β1π
−1(b1) + · · · + βkπ−1(bk) ,

for some complex constants β1, . . . , βk. Each bj equals v(i)
λ for some eigen-

value λ, and i is less than the multiplicity of λ. The nth term of π−1(v(i)
λ)

is Di(xn) evaluated at x = λ; that is, it equals⎧⎨⎩
n!

(n − i)!
λn−i if j ≤ i ,

0 if j > i ,

where the coefficient n!/(n − i)! is a polynomial in n whose degree equals
i. Therefore, (2.19) yields the result.

As an illustration of the method consider the following initial value prob-
lem:

sn+4 = sn+3 + 3sn+2 − 5sn+1 + 2sn with s0 = 1, s1 = −1, s2 = 0, s3 = 1 .

Then ch(x) = x4 − x3 − 3x2 + 5x − 2, and its companion matrix is

A =

⎡⎢⎢⎣
1 3 −5 2
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦

2.4 The Asymptotic Behavior of Solutions 25

with eigenvalues λ1 = 1, λ2 = −2 and respective multiplicities m1 = 3,
m2 = 1. Therefore, there exist polynomials a1(x), a2(x) such that any so-
lution 〈sn〉 to the recurrence has general term

sn = a1(n)(1)n + a2(n)(−2)n .

Further, deg(a1) < 3 and deg(a2) < 1 imply that there exist constants
βi ∈ C such that

a1(x) = β0 + β1x + β2x
2 and a2(x) = β3 ,

which give
sn = (β0 + β1n + β2n

2) + β3(−2)n .

Using the initial values, this reduces to solving a system of four equations
in the unknowns β0, β1, β2, β3 with augmented matrix⎡⎢⎢⎣

1 0 0 1 1
1 1 1 −2 −1
1 2 4 4 0
1 3 9 −8 1

⎤⎥⎥⎦ .

Gaussian elimination can be used to obtain the row reduced echelon form⎡⎢⎢⎣
1 0 0 0 8/9
0 1 0 0 −8/3
0 0 1 0 1
0 0 0 1 1/9

⎤⎥⎥⎦ ,

and from this a1(x) = 8
9 − 8

3x + x2 and a2(x) = 1
9 , giving

sn =
8
9
− 8

3
n + n2 +

1
9
(−2)n.

The k × k matrix V whose columns consist of the vectors v(i)
λ (written

as columns according to the order given in (2.17)) can be called the gen-
eralized Vandermonde matrix associated with the recurrence. In order
to find the polynomials a1(x), . . . , at(x) corresponding to the initial con-
ditions (s0, s1, . . . , sk−1) = α, we solve the matrix equation V x = α. As
with the standard Vandermonde matrix, the fact that every initial value
problem for (HL) has a unique solution translates to the invertibility of
the generalized Vandermonde matrix. The explicit form of V −1 is found in
Exercise 2.17.

2.4 The Asymptotic Behavior of Solutions

We will now use the matrix form Sn = AnS0 to estimate the asymptotic
size of solutions to (HL) without computing An. The basic idea is to write

26 2. Homogeneous Linear Recurrence Relations

the initial condition S0 as a linear combination of k linearly independent
vectors C1, . . . , Ck for which the asymptotic size of each AnCi is known.

We first consider the principal case for applications, the case in which A is
a diagonalizable matrix. This means that there exists a basis {C1, . . . , Ck}
of eigenvectors for Ck, and we can write S0 as S0 =

∑k
i=1 aiCi for some

ai ∈ C. If all of the dot products CT
j Ci = 0 with i = j happen to be zero (in

this case the matrix A is said to be orthogonally diagonalizable since
the basis is an orthogonal set), then

CT
j S0 = CT

j

k∑
i=1

aiCi =
k∑

i=1

aiC
T
j Ci = aj‖Cj‖2 ,

giving aj = CT
j X0/‖Cj‖2, where ‖C‖ is the Euclidean length of the vec-

tor C. Orthogonality therefore gives an easy expansion of S0 in terms of
the column eigenvectors of A. Although the orthogonality of the eigenvec-
tors can’t be guaranteed, we will see that a helpful property that we call
biorthogonality always holds when A is diagonalizable.

If λ is an eigenvalue, then each of the pair of homogeneous systems
(A − λI)X = 0 and X(A − λI) = 0 has a non-zero solution. For our pur-
poses, we’ll call a non-zero solution to (A − λI)X = 0 a column eigen-
vector, while a non-zero solution to the second system will be referred to
as a row eigenvector. Letting Z be the k × k matrix whose columns are
the column eigenvectors C1, . . . , Ck of A, then AZ = ZD, where D is the
diagonal matrix with diagonal entries λ1, . . . , λk. From the linear indepen-
dence of its columns, Z is an invertible matrix and Z−1A = DZ−1, which
means that the ith row Ri of Z−1 is a row eigenvector corresponding to λi.
From Z−1Z = I we also know that RiCj = 0 when i = j, and we call the
two sets of vectors {R1, . . . , Rk} and {C1, . . . , Ck} a pair of biorthogonal
sets. (Also note that RiCi = 1 for all i.) Mimicking the orthogonal case,
from S0 = a1C1 + · · · + akCk we have

RiS0 = Ri(a1C1 + · · · + akCk) = aiRiCi = ai .

Therefore, S0 =
∑k

i=1 (RiS0)Ci, and

(2.20) Sn = AnS0 =
k∑

i=1

(RiS0)(AnCi) ,

which we record in the following lemma.

Lemma 2.4.1. Let A be any diagonalizable k×k matrix. Let Z be the ma-
trix whose columns are linearly independent eigenvectors C1, . . . , Ck, and
let R1, . . . , Rk be the rows of Z−1. Then any solution to Sn+1 = ASn can
be written in the form

Sn =
k∑

i=1

(RiS0)λn
i Ci .

2.4 The Asymptotic Behavior of Solutions 27

When A has fewer than k linearly independent eigenvectors, then the
matrix Z whose columns are the generalized eigenvectors (which form
a basis for Ck) still satisfies (2.20) where R1, . . . , Rk are the rows of the
matrix Z−1.

When we order the different eigenvalues according to decreasing complex
modulus,

(2.21) |λ1| ≥ |λ2| ≥ · · · ≥ |λt| (where t ≤ k),

λ1 is called a dominant eigenvalue of the recurrence. If |λ1| > |λ2|
holds, then |λ1| is called the strictly dominant eigenvalue. (Note that
strict dominance does not prevent λ1 from being a multiple eigenvalue.)
For the case in which λ1 is a simple strictly dominant eigenvalue, we have

Sn = AnS0 =
k∑

i=1

(RiS0)(AnCi) = (R1S0)λn
1 C1 +

k∑
i=2

(RiS0)AnCi ,

and so
Sn

λn
1

= (R1S0)C1 + Yn ,

where Yn =
∑k

i=2 (RiS0)AnCi/λn
1 . Since each coordinate |Yn|i of |Yn| is

bounded above by |λ2|n times a polynomial in n (refer to Theorem 2.3.6),
the limiting value of |Yn|i/λn

1 exists and is zero. Therefore,

lim
n→∞

Sn

λn
1

= (R1S0)C1,

where C1 is a column eigenvector of λ1 and R1 is the specific row eigenvector
of λ1 chosen above. For any other row eigenvector R corresponding to λ1,
(RS0)/(RC1) = R1S0 holds, and we obtain the following theorem.

Theorem 2.4.2. If λ1 is a simple strictly dominant eigenvalue of the k×k
matrix A, then

lim
n→∞

Sn

λn
1

= aC ,

where C is any column eigenvector corresponding to λ1, R is any row eigen-
vector corresponding to λ1, and a = (RS0)/(RC), a quotient of dot prod-
ucts.

The upshot of this result is that for many reasonable homogeneous re-
currences and most initial conditions, the asymptotic behavior of a solution
can be considered to be one-dimensional. Full details of a solution would re-
quire a somewhat more complicated formula, but as long as the dot product
RS0 is non-zero, the solution converges in a ratio sense to a single vector.
When the dot product RS0 is zero, the theorem says only that the solu-
tion grows more slowly than |λ1|n, and it gives no more information about
the solution. The other main point is that the value of a can be computed
without computing the rest of the coefficients in the full expansion of the
solution.

28 2. Homogeneous Linear Recurrence Relations

2.5 Exercises

Ex 2.1. Show that every initial value problem has a unique solution.

Ex 2.2. Use induction to verify the closed formulas for the recurrence (2.1)
under each of the following initial conditions: S0 = (3, 2)T ; S0 = (1, 3)T .

Ex 2.3. Suppose that the sequence 〈sn〉 satisfies the Fibonacci recurrence
and s3 = 5, s6 = −2. What is s4? What is s10? What are the initial values
s0 and s1?

Ex 2.4. Construct an argument that concludes there is a sequence 〈sn〉
that satisfies the Fibonacci recurrence for which s20 = 23 and s1000 = 56.

Ex 2.5. Show directly that any linear combination of solutions to (HL) is
itself a solution.

Ex 2.6. For a fixed polynomial Q in k ≥ 2 variables consider the set V of
all sequences 〈sn〉 that are solutions to the kth order recurrence

sn+k = Q(sn, sn+1, . . . , sn+k−1) .

If V is a vector space, show that Q must be linear with zero constant term.

We know that the set of all sequences of complex numbers forms a com-
plex vector space under the operations of addition and scaling. Applying
the definition of linear independence (refer to Appendix C) to this vector
space, we see that sequences φ1(n), . . . , φk(n) are linearly independent
iff

b1φ1(n) + · · · + bkφk(n) = 0 for all n ≥ 0 =⇒ b1 = b2 = · · · = bk = 0 .

Ex 2.7. Show that every kth order homogeneous linear recurrence has k
linearly independent solutions.

Ex 2.8. Let φ1(n), . . . , φk(n) be k linearly independent solutions to a kth

order homogeneous linear recurrence. Show that the solution to any initial
value problem for this recurrence can be written in the form

∑k
i=1 biφi(n).

Ex 2.9. Let φ1(n), . . . , φk(n) be solutions to a kth order linear recurrence.
Show that the following three statements are equivalent:

(a)
∑k

i=1 biφi(n) is the zero sequence.
(b) For all 0 ≤ n < k,

∑k
i=1 biφi(n) = 0.

(c)
∑k

i=1 biφi(n) = 0 for k consecutive values of n.

Ex 2.10. Use diagonalization of the Fibonacci matrix to obtain Binet’s
Formula (1.5), the closed form for the Fibonacci numbers.

2.5 Exercises 29

Ex 2.11. Let sn+2 = c1sn+1 + c2sn be a second–order recurrence with
eigenvalues λ1 = (c1 +

√
D)/2 and λ2 = (c1 −

√
D)/2, where D = c2

1 + 4c2.
If D = 0, show that the sequence whose nth term is

1√
D

(
−α0λ1λ2(λn−1

1 − λn−1
2) + α1(λn

1 − λn
2)

)
is the unique solution with initial conditions s0 = α0, s1 = α1.

Ex 2.12. Show that the Vandermonde matrix associated with λ1, . . . , λk

is invertible iff the λi are distinct.
Hint: Premultiply the matrix by a row vector where the product for each
entry is interpreted as the evaluation of a polynomial at λi.

Ex 2.13. Use the product rule for differentiation and induction to sub-
stantiate identity (2.11).

Ex 2.14. Solve the initial value problem

sn+3 = 2sn+2 + 5sn+1 − 6sn ; s0 = 9 , s1 = −18 , s2 = 66.

Ex 2.15. Check that each sequence whose nth term has the form given in
(2.18) satisfies the recurrence (HL).

Ex 2.16. Use Theorem 2.3.6 to find the solution to

sn+4 = 8sn+2 − 16 , s0 = −1, s1 = 8, s2 = 4, s3 = 16 .

Ex 2.17. Let λ1, . . . , λt be distinct complex numbers and let m1, . . . , mt

be any positive integers that sum to k. Let V be the k × k generalized
Vandermonde matrix associated with this data, the matrix V whose
columns are the vectors given in (2.17).

(a) Construct an argument that proves V is invertible.
(b) If A is the companion matrix for

P (x) = (x − λ1)m1(x − λ2)m2 · · · (x − λt)mt ,

compute V −1AV .

(c) For 1 ≤ i ≤ t, 1 ≤ j ≤ mi, define Q(x) =
P (x)

(x − λi)j
, and expand it

as a polynomial of degree k − 1 in x:

Q(x) = b0 + b1x + · · · + bk−jx
k−j + · · · + bk−1x

k−1 .

Show that deg(Q) ≤ k − j.
(d) Show that

(b0, b1, . . . , bk−1) · v(t)
λi

{
= 0 if j = t ,

= 0 if j < t .

30 2. Homogeneous Linear Recurrence Relations

(e) Compute the precise value of the dot product in (d).
(f) Use the information from the previous parts to construct the inverse

of V .

Ex 2.18. Let sn+2 = c1sn+1 + c2sn+2 be a second–order recurrence such
that D = c2

1 + 4c2 is zero. Using the techniques of Section 2.3.2, show that
the sequence with general term

sn = α0

(c1

2

)n

+ n
(
α1 −

α0c1

2

)(c1

2

)n−1

is the unique solution to (HL) with s0 = α0 and s1 = α1.

Ex 2.19. Write a general procedure for solving (HL) given knowledge of
the roots of the characteristic polynomials and their multiplicities.

Ex 2.20. Show that

lim
n→∞

a(n + 1)
a(n)

= 1

holds for any polynomial a(x) ∈ C[x].

The next two exercises assume the ordering of eigenvalues given in (2.21).

Ex 2.21. Consider a solution 〈sn〉 to the homogeneous linear recurrence
sn+k = c1sn+k−1 + c2sn+k−2 + · · · + cksn.

(a) Show that if |λ1| < 1, then limn→∞ sn = 0.
(b) Show that if the coefficients in (HL) are integers and ck = 0, then

|λ1| ≥ 1.

Ex 2.22. Let sn+2 = c1sn+1 + c2sn be a second–order recurrence with
c1 = 0 and c2

1 + 4c2 > 0.
(a) Show that λ1 is strictly dominant.
(b) Prove that for any 〈sn〉 ∈ X the limit lim

n→∞
sn

λn
1

exists. Moreover, when

s1 = s0λ2, show that this limit must be non-zero.

Ex 2.23. For each n ≥ 1 let Dn be the determinant of the n×n tridiagonal
matrix ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 1 0 0 . . . 0 0 0
1 α 1 0 . . . 0 0 0
0 1 α 1 . . . 0 0 0
...

.
...

...
.

...
0 0 0 0 . . . α 1 0
0 0 0 0 . . . 1 α 1
0 0 0 0 . . . 0 1 α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where α is some fixed real number. Show that the sequence 〈Dn〉 satisfies
the second–order recurrence Dn = αDn−1 − Dn−2 with initial conditions

2.5 Exercises 31

D0 = 1 and D1 = α. Find the values of α for which limn→∞ |Dn| = ∞.
For what values of α is Dn = O(n)? What is the asymptotic size of Dn

for other values of α? Find the values of α for which Dn is periodic, and
decide what periods are possible.

3
Finite Difference Equations

3.1 Linear Difference Equations

A difference equation is the discrete analog of a differential equation. Al-
though differential equations are typically studied earlier in a mathematical
curriculum, there are many respects in which the theory of difference equa-
tions is simpler. A finite difference equation has the general form

(3.1) sn = Φ(sn−1, sn−2, . . . , sn−k, n),

where Φ is a fixed complex-valued function and the integer k is called the
order of the equation. The initial value problem for (3.1) is the problem
of finding a sequence 〈sn〉 that satisfies (3.1) for a given function Φ and a
fixed initial value vector S0 = (sk−1, . . . , s1, s0)T . An initial value problem
has only one solution, because (as in Chapter 2) for any fixed k initial values
s0, . . . , sk−1, the kth term is specified by sk = Φ(sk−1, sk−2, . . . , s0, k), and
all successive values are similarly found. From this we obtain the following
result.

Theorem 3.1.1 (Existence and uniqueness theorem). Every initial
value problem for a finite difference equation has a unique solution.

The essential ingredient in the proof of this result is the assumption that
Φ is a function, that is, that Φ returns exactly one value for a given input.

The function Φ is called a linear function in the variables sn−1, . . . , sn−k

if there exist k + 1 complex-valued functions g1, . . . , gk and ψ defined on

34 3. Finite Difference Equations

the natural numbers such that for all n ≥ k,

Φ(sn−1, sn−2, . . . , sn−k, n) = g1(n)sn−1 + · · · + gk(n)sn−k + ψ(n) ,

where ψ is called the input or forcing function. When Φ is a linear
function, then (3.1) is called a linear difference equation. For the special
case in which the coefficients g1, . . . , gk are constants, (3.1) becomes

sn = c1sn−1 + · · · + cksn−k + ψ(n) for c1, . . . , ck ∈ C ,

and it is called a constant coefficient equation.
In this chapter we study linear constant coefficient difference equations,

and we will simply refer to them as difference equations or recurrences.
Every such recurrence can be written in the form

(L) sn − c1sn−1 − c2sn−2 − · · · − cksn−k = ψ(n) for n ≥ k ,

for some complex-valued function ψ and constants c1, . . . , ck, where ck is
non-zero. The homogeneous linear constant coefficient equation (HL) stud-
ied in Chapter 2 is the special case in which the input function ψ(x) is the
zero function.

3.1.1 First–order equations

A first–order recurrence has the form

(L1) sn = λsn−1 + ψ(n) for all n ≥ 1 ,

where the function ψ is defined for all positive natural numbers and λ = 0.
When we consider the associated initial value problem for fixed s0 = α0,
we have

s0 = α0;
s1 = λs0 + ψ(1) = λα0 + ψ(1) ;

s2 = λs1 + ψ(2) = λ2α0 + λψ(1) + ψ(2) ;

s3 = λs2 + ψ(3) = λ3α0 + λ2ψ(1) + λψ(2) + ψ(3);
...

and this gives the following form for the solution.

Theorem 3.1.2. The initial value problem

(3.2) sn = λsn−1 + ψ(n), s0 = α0 ,

always has the unique solution 〈sn〉 with general term

(3.3) sn = α0λ
n +

n∑
i=1

ψ(i)λn−i

(where the sum is defined to be zero when n = 0).

3.1 Linear Difference Equations 35

Proof. Since we already know that (3.2) has a unique solution, we will show
by induction on n that the solution has the form given in (3.3).

For n = 0, observe that (3.3) reduces to s0 = α0, which is the initial
condition. For the induction step, assume that (3.3) does satisfy (3.2) for
all n = 0, . . . , K − 1 and then use the defining equation (3.2) to find sK

from sK−1 and ψ(K):

sK = λsK−1 + ψ(K)

= λ

(
α0λ

K−1 +
K−1∑
i=1

ψ(i)λK−1−i

)
+ ψ(K)

= α0λ
K +

K∑
i=1

ψ(i)λK−i,

as required.

This proof is remarkably simple when compared to the corresponding
theorem for differential equations. To solve a first–order initial value prob-
lem in differential equations,

D(s(t)) + c s(t) = ψ(t), s(0) = α0,

it’s necessary to multiply through by an “integrating factor” ect so that the
equation becomes

D(s(t)) ect + c s(t) ect = D
(
ects(t)

)
= ectψ(t),

which has the solution

s(t) = e−ct

(∫ t

0

ectψ(t) dt

)
+ e−ct α0 ,

provided the integral exists. From this we see several ways in which dif-
ferential equations are more difficult: the existence of a solution is not
guaranteed, finding a solution is harder, and some theory is needed to deal
with uniqueness.

Let’s look at the simplest example of a nonhomogeneous first–order re-
currence, when the input ψ(n) = c is a constant,

(3.4) sn = λsn−1 + c, s0 = α0 .

From (3.3) we have

sn = α0λ
n + c(λn−1 + λn−2 + · · · + 1),

which can be computed to be

(3.5) sn =

⎧⎨⎩α0λ
n + c

1 − λn

1 − λ
if λ = 1 ,

α0 + cn if λ = 1 .

36 3. Finite Difference Equations

The difficulty with the form of solution in Equation 3.3 is that it contains
a summation, and we would prefer solutions without summations. As the
example shows, some summations are easy to replace. In particular, any
summation of the form

n∑
i=0

ri

(which is usually called a geometric series) can easily be replaced by a
closed form formula. More generally if ψ(n) can be written as

ψ(n) = b1γ
n
1 + b2γ

n
2 + · · · + blγ

n
l ,

then

n∑
i=1

ψ(i)λn−i =
n−1∑
i=0

ψ(n − i) λi

=
n−1∑
i=0

λi(
l∑

j=1

bjγ
n−i
j)

=
l∑

j=1

bjγ
n
j

n−1∑
i=0

(λ

γj

)i

=
l∑

j=1

bjγ
n
j

(
(λ

γj
)n − 1

(λ
γj

) − 1

)

=
l∑

j=1

bjγj

(
λn − γn

j

λ − γj

)
(if λ = γj for each j).

Of course, a similar formula is possible when some γj satisfies γj = λ.
Further, not much more complicated formulas are possible when ψ(n) has
the form

p1(n)γn
1 + p2(n)γn

2 + · · · + pl(n)γn
l ,

where each pi(n) is a polynomial in n. Instead of pursuing these summa-
tions in the context of first–order equations, we will move on to kth order
equations, and in Section 3.3 we will deal with inputs that have this special
form.

3.2 General and Particular Solutions

Because our difference equations are linear, we can conveniently rewrite

sn = c1sn−1 + c2sn−2 + · · · + cksn−k + ψ(n)

by using
L[sn] = sn − c1sn−1 − c2sn−2 − · · · − cksn−k

3.2 General and Particular Solutions 37

and writing
L[sn] = ψ(n).

When we consider solutions to the homogeneous version of this recurrence

L[sn] = 0,

we have

if L[xn] = 0 and L[yn] = 0,

then L[xn + yn] = L[xn] + L[yn] = 0,

and L[c xn] = c L[xn] = 0.

Because of these properties we call L[] a linear operator. (Refer to Ap-
pendix C.)

If we have k linearly independent sequences

〈x(1)
n 〉, 〈x(2)

n 〉, . . . , 〈x(k)
n 〉

such that
L[x(1)

n] = · · · = L[x(k)
n] = 0,

then for every choice of constants α1, . . . , αk,

L

[
k∑

i=1

αix
(i)
n

]
= 0.

Since we can choose the αi’s, we can force L[
∑k

i=1 αix
(i)
n] to satisfy any set

of k initial conditions. Specifically, if the initial conditions are s0, s1, . . . , sk−1,
then

k∑
i=1

αix
(i)
0 = s0(3.6)

k∑
i=1

αix
(i)
1 = s1

...
k∑

i=1

αix
(i)
k−1 = sk−1

and by solving this system of k linear equations in k unknowns we can
calculate α1, . . . , αk. The assumption that the sequences are linearly inde-
pendent assures us that this set of linear equations has a unique solution.

Linearity will also allow us to break the the problem of solving

L[sn] = ψ(n)

38 3. Finite Difference Equations

into two parts. We let sn = hn + vn with

L[hn] = 0 and L[vn] = ψ(n) ,

and by linearity
L[sn] = L[hn + vn] = ψ(n).

We are not ready to use the initial conditions. We want to find a vn that
satisfies

L[vn] = ψ(n) ,

but vn does not need to satisfy the initial conditions. We call such a vn a
particular solution. In the next section we will look at some methods for
actually finding a particular solution.

As we saw above, if we can find k linearly independent sequences

〈x(1)
n 〉 , 〈x(2)

n 〉 , · · · , 〈x(k)
n 〉

such that
L[x(1)

n] = · · · = L[x(k)
n] = 0,

then for for every choice of αi’s we have

L[
k∑

i=1

αix
(i)
n] = 0.

Since this summation represents a whole family of solutions to the homo-
geneous difference equation, we call

k∑
i=1

αix
(i)
n = gn

the general solution to the difference equation and denote this solution
by 〈gn〉 . Then

L[gn + vn] = L[gn] + L[vn] = 0 + ψ(n) = ψ(n),

and we can state that every solution of the difference equation can be
written as the sum of the general solution and a particular solution.

Actually, this does not yet solve the initial value problem because gn still
has k unspecified coefficients, α1, α2, . . . , αk. If we choose these coefficients
such that gn + vn satisfies the initial conditions, we will be done. But this
is the same process as solving the system of linear equations (3.6), with the
difference that we subtract the initial values of vn from the original initial

3.2 General and Particular Solutions 39

conditions. The system of equations to be solved is

k∑
i=1

αix
(i)
0 = s0 − v0

k∑
i=1

αix
(i)
1 = s1 − v1

...
k∑

i=1

αix
(i)
n = sk−1 − vk−1.

Letting 〈hn〉 be the solution with these computed values for the αi’s gives

L[hn + vn] = ψ(n) ,

and 〈hn + vn〉 satisfies the initial conditions.
We may also view this solution process as
(a) Find any 〈vn〉 that satisfies

L[vn] = ψ(n).

(b) Find 〈hn〉 such that 〈hn + vn〉 satisfies the initial conditions and

L[hn] = 0.

In this process the second step is simply solving an initial value problem
for a homogeneous difference equation.

3.2.1 Finding a particular solution via summation

We have proved (Theorem 3.1.2) that the sequence 〈vn〉 defined by

v0 = 0; vn =
n∑

i=1

ψ(i)λn−i = (ψ(1), . . . , ψ(n)) · (λn−1, . . . , λ, 1)

(where the last expression should be read as a summation or dot product)
is a particular solution to the first–order equation

sn = λsn−1 + ψ(n) .

The solution can be rewritten as the dot product

vn = (ψ(1), . . . , ψ(n)) · (tn−1, . . . , t0) ,

where tn = λn is the solution to the homogeneous initial value problem

sn = λsn with s0 = 1 .

We can generalize this formula to general kth order difference equations.

40 3. Finite Difference Equations

Theorem 3.2.1. Let 〈tn〉 be the solution to the kth order homogeneous
initial value problem

sn = c1sn−1 + c2sn−2 + · · ·+ cksn−k with (sk−1, . . . , s0) = (1, 0, . . . , 0) .

Then for any sequence ψ(n), the sequence 〈vn〉 given by

v0 = · · · = vk−2 = 0, vk−1 = 1, vn = (ψ(k), . . . , ψ(n)) · (tn−1, . . . , tk−1)

is a particular solution to the difference equation

(3.7) sn = c1sn−1 + c2sn−2 + · · · + cksn−k + ψ(n) .

Proof. Since v0 = · · · = vk−2 = 0, the value vk = ψ(k)tk−1 = ψ(k) does
satisfy (3.7) for n = k. For n > k, since t0 = · · · = tk−2 = 0 then

c1vn−1 + c2vn−2 + · · · + ckvn−k

equals

c1(tn−2ψ(k) + · · · + tk ψ(n − 2) + tk−1ψ(n − 1))
+ c2(tn−3ψ(k) + · · · + tk−1ψ(n − 2) + tk−2ψ(n − 1))

+ · · ·
+ ck(tn−1−kψ(k) + · · · + t1 ψ(n − 2) + t0 ψ(n − 1)) .

Adding down the “columns”, this becomes

(k∑
i=1

citn−1−i

)
ψ(k) + · · · +

(k∑
i=1

citk−i

)
ψ(n − 1)

= tn−1ψ(k) + · · · + tkψ(n − 1)
= (tn−1, . . . , tk, 1) · (ψ(k), . . . , ψ(n − 1), ψ(n)) − ψ i(n)
= vn − ψ(n)

by definition of vn. By induction, 〈vn〉 is a solution to

vn = c1vn−1 + · · · + ckvn−k + ψ(n) .

Let’s find a particular solution to the second order equation

(3.8) sn = 2sn−1 − sn−2 + 2n .

As in the theorem, if we let 〈tn〉 be the solution to the associated homoge-
neous initial value problem

sn = 2sn−1 − sn−2; (s1, s0) = (1, 0) ,

3.3 A Special Class of Linear Recurrences 41

its first few terms are t0 = 0, t1 = 1, t2 = 2, t3 = 3, . . . , and tn = n can be
proved in general by induction. Then ψ(n) = 2n gives

vn = (ψ(2), . . . , ψ(n)) · (n − 1, . . . , 1)

= (22, . . . , 2n−1, 2n) · (n − 1, . . . , 2, 1)

=
n∑

j=2

2j (n + 1 − j)

as a particular solution of (3.8). In this case it’s relatively easy to get a
closed form for 〈vn〉 because the sequence satisfies a first–order equation
since

vn = (22, . . . , 2n) · (1, . . . , 1) + (22, . . . , 2n−1, 2n) · (n − 2, . . . , 1, 0)

= 22(1 + · · · + 2n−2) + vn−1 = 22(2n−1 − 1) + vn−1 .

Therefore, using λ = 1 and ψ(n) = 4(2n−1 − 1), 〈vn〉 is a solution to
vn = λvn−1 + ψ(n), and from the result for first–order equations,

vn = (ψ(1), . . . , ψ(n)) · (λn−1, . . . , λ)

= 4
n−1∑
i=0

(2i − 1) = 4(2n − 1) − 4n = 4(2n − 1 − n)

is a particular solution to (3.8). Notice that determining this closed form
relied on being able to compute tn easily as well as on seeing a linear
relationship between consecutive elements of the constructed particular so-
lution 〈vn〉 .

3.3 A Special Class of Linear Recurrences

We will now generalize the last section and develop an efficient method
for obtaining a particular solution for a frequently occurring class of linear
recurrences, the ones whose forcing function is ψ(n) = λnp(n) where λ is a
constant and p(n) is a polynomial.

42 3. Finite Difference Equations

Theorem 3.3.1. For any polynomial p(x) and any constant λ, consider
the linear recurrence

sn = c1sn−1 + · · · + cksn−k + λnp(n) .

Let λ1, . . . , λt be the eigenvalues of the recurrence with respective multi-
plicities m1, . . . , mt and define δ by

δ =

{
0 if λ /∈ {λ1, . . . , λt},
mi if λ = λi .

If deg(p) = d, then there exists a polynomial q(x) with deg(q) ≤ d such
that vn = λnnδq(n) is a particular solution of the recurrence. Moreover,
the polynomial q(x) can be calculated in O(d2) operations.

Proof. Our proof actually constructs the polynomial q. We may assume
that λ = 0, because if λ = 0, the equation is homogeneous, and vn = 0
satisfies the recurrence. Then λnnδq(n) is a solution and for all integers
n ≥ 0,

λnnδq(n) − c1λ
n−1(n − 1)δq(n − 1)

−c2λ
n−2(n − 2)δq(n − 2) − · · · − ckλn−k(n − k)δq(n − k) = λnp(n) .

Dividing both sides by the non-zero λn−k, the equation becomes a polyno-
mial equation in n, which holds for the (infinite) set of natural numbers,
and so in fact, the equation is the polynomial identity

λkxδq(x) − c1λ
k−1(x − 1)δq(x − 1) − · · · − ck(x − k)δq(x − k) = λkp(x) .

Recall that p(x) = pdx
d+ · · ·+p1x+p0 is a fixed polynomial and our goal is

to construct coefficients qd, . . . , q1, q0 such that q(x) = qdx
d + · · ·+ q1x+ q0

satisfies this identity. Computing a few coefficients, the coefficient of xd+δ

on the left side is
λkqd − c1λ

k−1qd − · · · − ckqd ,

which is ch(λ)qd, and the coefficient of xδ+d−1 is

λkqd−1 − c1λ
k−1

(
(−1)

(
d + δ

1

)
qd + qd−1

)
− c2λ

k−2
(
(−2)

(
d + δ

1

)
qd + qd−1

)
− · · · − ck

(
(−k)

(
d + δ

1

)
qd + qd−1

)
,

3.3 A Special Class of Linear Recurrences 43

which we can write as −t1
(
d+δ
1

)
qd + t0qd−1 using t0 = ch(λ) and t1 =∑k

j=1 cj(−j)λk−j . In general, defining ti =
∑k

j=1 cj(−j)iλk−j for all i =
0, 1, . . . , d, it can be shown that the coefficient of xδ+d−j on the left side is

−tj

(
δ + d

j

)
qd − · · · − t1

(
δ + d − (j − 1)

1

)
qd−(j−1) + t0qd−j .

We first consider the case in which λ is not an eigenvalue. Then t0 = ch(λ)
is non-zero, δ = 0, and the requirement becomes the dot product(

−tj

(
d

j

)
, . . . ,−t1

(
d − (j − 1)

1

)
, t0

)
· (qd, . . . , qd−(j−1), qd−j) = λkpj ,

for all j = 0, . . . , d, a system of d+1 equations in the unknowns qd, . . . , q1, q0.
The coefficient matrix is a lower triangular matrix in which each diagonal
entry is the non-zero t0, which means that the system has a unique solution.
This gives the unique polynomial q(x) whose degree is at most d.

If λ is a simple eigenvalue, then δ = 1 and t0 = 0, which means that the
coefficient of xd+δ on the left side is qdt0 = 0. Since the right-hand side
has degree d, the coefficient of xd+1 is 0. These two facts give us the trivial
equation 0 = 0. We have d+1 remaining equations for the d+1 coefficients
of q. These are(

−tj

(
1 + d

j

)
, . . . ,−t1

(
1 + d − (j − 1)

1

))
· (qd, . . . , qd−(j−1)) = λkpj

for all j = 1, . . . , d + 1, again a lower triangular system in which each
diagonal entry is now t1. Fortunately,

k ch(x) − xch′(x) =
k∑

j=1

cj(−j)xk−j ,

which means that
k ch(λ) − λ ch′(λ) = t1 .

Since λ is a simple eigenvalue, then ch(λ) = 0 but ch′(λ) = 0, and so t1 = 0
as required to ensure a unique solution.

What about the remaining cases, in which the multiplicity of λ is m > 1?
Here it seems that we have m + d + 1 equations for the d + 1 unknowns
qd, qd−1, . . . , q0. But ch(λ) = 0, and for each j < m the value of D(j)(ch)
at x = λ is zero. This means that the first δ = m equations are simply the
redundant equation 0 = 0. The remaining d + 1 equations will specify the
d + 1 coefficients of q(n). Notice that tm can be written as a linear combi-
nation of ch(λ), D(ch)(λ), . . . , D(m)(ch)(λ) with a non-zero coefficient for
D(m)(ch)(λ) (refer to Exercise 3.6). Since we have assumed that λ has
multiplicity m as a root of ch(λ), then

ch(λ) = D(ch)(λ) = · · · = D(m−1)(ch)(λ) = 0 ,

44 3. Finite Difference Equations

and D(m)(ch)(λ) = 0. So tm = 0, and the lower triangular system with
tm along the diagonal yields unique values for the coefficients qd, . . . , q0.

Now for the operation count. Since k is a constant, each of the O(d2)
entries in the coefficient matrix can be computed with a constant number
of multiplications. Further, because the matrix is in triangular form, the
associated system of equations can be solved by back substitution. That
is, qd can be computed in one division; qd−1 is computed using this known
value of qd and one division; in general, each qd−j is computed from the val-
ues qd, qd−1, . . . , qd−(j−1) using O(j) operations. This means that once the
coefficient matrix has been computed in O(d2) operations, the coefficient
set qd, . . . , q0 can be found using O(d2) operations.

For the second–order recurrence

sn = 2sn−1 − sn−2 + 2n ,

λ = 2 is not an eigenvalue of the recurrence, which means that δ = 0,
and deg(q) = 0 follows from p(n) = 1. This gives the particular solution
vn = 2nc, where c is a constant. To solve for c,

vn − 2vn−1 + vn−2 = 2n ,

2nc − 2 · 2n−1c + 2n−2c = 2n−2c = 2n ,

giving c = 4. And vn = 2n+2 is a different particular solution from the one
we found earlier.

For
sn = 4 sn−1 − 4 sn−2 + 1 · 2n,

the input function is ψ(n) = 1 · 2n; that is, p(n) = 1 and λ = 2. Since
2 is a double root of the characteristic polynomial λ2 − 4 λ + 4, we
have δ = 2, and we expect a particular solution vn to have the form
vn = λ2nδq(n) = 2nn2c because p(n) is a constant. Substituting this vn

into the equation, we have

2nn2c = 4 (2n−1(n − 1)2c) − 4 (2n−2(n − 2)2c) + 2n ,

and dividing by 2n gives

n2c = 2 (n − 1)2c − (n − 2)2c .

Equating the coefficients of n2 gives

c = 2 c − c ,

which is true but uninformative. Equating coefficients of n gives

0 = −4 c + 4 c ,

3.4 Operator Notation 45

which again is true but uninformative. Finally, equating the constant terms
on each side gives

0 = 2 c − 4 c + 1 ,

which implies that c = 1/2, and that the particular solution is vn = 2n−1n2.
As above, this particular solution is equivalent to the polynomial identity

n2 = 2 (n − 1)2 − (n − 2)2 + 2 ,

which can be verified by expanding the terms or by checking this 2nd order
identity at 3 points. For example, choosing n = 0, n = 1, and n = 2 gives
the three valid equations

0 = 2 − 4 + 2 ,

1 = 0 − 1 + 2 ,

4 = 2 − 0 + 2 .

Appendix A contains more worked problems that use this technique.

3.4 Operator Notation

Operator notation is a convenient way to display some facts about difference
equations. Here, we’ll use this notation introduced in Section 3.2 to explain
the superposition principle and to show why it was easy to solve the special
class of recurrences in Section 3.3.

Superposition means putting one thing on top of another. In our context,
it means combining several sequences to obtain a new sequence. For linear
difference equations the superposition principle is that

L[xn] = φ(n) + ψ(n)

can be solved by solving the two equations

L[yn] = φ(n) and L[zn] = ψ(n) ,

and then combining these two solutions by letting xn = yn + zn so that

L[xn] = L[yn + zn] = L[yn] + L[zn] = φ(n) + ψ(n) .

Of course, this principle applies to any convenient way in which one can
break up the input. Specifically, if

L[xn] = φ(n) ,

and φ(n) can be written as

φ(n) =
r∑

i=1

αi ψi(n),

46 3. Finite Difference Equations

then one can solve r equations:

for i from 1 to r solve

L[x(i)
n] = ψi(n)

and sum these to find a solution to the original equation as

xn =
r∑

i=1

x(i)
n .

Operator notation also shows why the special cases of Section 3.3 are
easy to deal with. Define the operator Sγ by

Sγ [yn] = yn − γ yn−1.

Clearly,
Sγ [γn] = γn − γ · γn−1 = 0.

If one wants to solve the nonhomogeneous difference equation

L[xn] = γn,

then Sγ can be used to reduce the nonhomogeneous equation to a homo-
geneous equation, because

Sγ [L[xn]] = Sγ [γn] = 0.

Let us define Lγ as the composition of Sγ with L; that is, for all sequences
〈xn〉,

Lγ [xn] = Sγ [L[xn]].

The characteristic polynomial of Lγ is simply the product of the charac-
teristic polynomials of Sγ and L. That is,

chLγ (λ) = (λ − γ) · chL(λ),

because the characteristic polynomial of Sγ is (λ − γ).
Now the reason that this special case is so special becomes clear. The

special input functions themselves satisfy linear constant coefficient differ-
ence equations. Specifically, letting Sd+1

γ be the operator that corresponds
to d + 1 applications of Sγ , then if ψ(n) = p(n) γn, where p(n) is a
polynomial of degree d,

Sd+1
γ [ψ(n)] = Sd+1

γ [p(n) γn] = 0.

Hence the special nonhomogeneous case

L[xn] = p(n) γn

3.5 The Shift Operator on the Space of Sequences 47

reduces to the higher order homogeneous equation

Ld+1[xn] = 0,

where Ld+1 is Sγ composed d+1 times with L. Of course, the characteristic
polynomial of Ld+1 is

chLd+1(λ) = (λ − γ)d+1 · chL(λ).

This reduction does not change the initial values for 〈xn〉 , but since
the order of the recurrence has increased, more initial values are needed.
If x0, . . . , xk−1 were the original initial conditions, then the extra initial
conditions can be computed from these and from some values of ψ(n).
Specifically, if

L[xn] = xn −
k∑

i=1

ci xn−i,

then xk, . . . , xk+d can be computed by

xk =
k∑

i=1

ci xk−i + ψ(k) ,

...

xk+d =
k∑

i=1

ci xk+d−i + ψ(k + d).

Since each new initial condition is a linear combination of k previous
conditions and one value of ψ(n), each condition can be computed using
O(k) operations, and the set of d + 1 conditions can be computed using
O(k(d + 1)) operations.

While considering the special nonhomogeneous case as a homogeneous
equation may be psychologically simplifying, it may be computationally
more complex. If one uses one of the standard Θ(k3) methods to solve a
system of k linear algebraic equations, then converting to a (k + d + 1)st

order difference equation will lead to solving for k + d + 1 coefficients and
thus using Θ((k + d + 1)3) operations[78]. In contrast, first finding the
particular solution, which can be done in O(d2) operations, and then solving
for the k coefficients of a homogeneous solution, which can be done in Θ(k3)
operations, will take a total of Θ(k3 + d2) operations, which will be fewer
than the Θ((k + d + 1)3) operations of the increased order homogeneous
method.

3.5 The Shift Operator on the Space of Sequences

In contrast with the homogeneous recurrences in Chapter 2, when ψ is not
the zero function, the set of solutions to (L) is not a vector space. By looking

48 3. Finite Difference Equations

at things slightly differently, the problem of solving these nonhomogeneous
recurrences can be put into the context of linear algebra. For the moment
we consider the infinite-dimensional complex space S of doubly infinite
sequences

. . . , s−2, s−1, s0, s1, s2, . . . ,

and define the shift operator σ on S to be the function that shifts a
sequence s ∈ S one step to the right,

σ(〈sn〉) = 〈sn−1〉 .

This operator is defined on the vector space S. We’d like a right-shift
operator on S+, the space of singly infinite sequences, but how is it defined?
When we shift a singly infinite sequence one step to the right, what fills the
vacated 0th term? In Exercise 3.1 you show that there’s only one assignment
that results in a linear operator: the 0th term must equal 0. Accordingly,
the linear shift operator σ on S+ is defined as

(3.9) σ(〈s0, s1, s2, s3, . . . 〉) = 〈0, s0, s1, s2, s3, . . . 〉 .

(Here we’re using the same symbol for the shift operator on both S and
S+.) In Chapter 2 we used powers of the differentiation operator(repeated
composition of the operator D), which are also linear. In general, integer
powers of a linear operator are linear, and in fact, any polynomial in a
linear operator is a linear operator. For example, the operator σk shifts
a sequence k steps to the right, and applying the operator 2 − 3σ + 4σ3

to any sequence 〈sn〉 results in a sequence whose nth term (for n ≥ 3) is
2sn−3sn−1+4sn−3. Since the left side of (L) is the nth term of the sequence
s−c1σ(s)−c2σ

2(s)−· · ·−ckσk(s), it is precisely L[s], where L is the linear
operator L = I − c1σ − c2σ

2 − · · · − ckσk. This representation allows us to
see another analogy between difference equations and differential equations.
The general kth order linear constant coefficient differential equation has
the form

(3.10) x(t) − c1D(x(t)) − c2D
2(x(t)) − · · · − ckDk(x(t)) = β(t) ,

where D is the differentiation operator on the vector space of infinitely
differentiable functions on R or C (or some other convenient domain of
definition). The left side of (3.10) can be written as LD(x) for

LD = I − c1D − c2D
2 − · · · − ckDk ,

and (3.10) becomes the functional equation LD(x) = β. Likewise, the dif-
ference equation (L) can be written as L[s] = ψ, where

ψ = 〈0, 0, . . . , 0, ψ(k), ψ(k + 1), . . . 〉

3.5 The Shift Operator on the Space of Sequences 49

is an element of the vector space S+. Then s ∈ S+ is a solution to (L) iff
the sequence L[s]− ψ is zero from the kth term onwards. We can now use
linear algebra, because

Vk = {s ∈ S+ : sn = 0 for all n ≥ k }

is a k-dimensional subspace of S+ (refer to Exercise 3.3) and

(3.11) s ∈ S+ is a solution to (L) ⇐⇒ L[s] − ψ ∈ Vk.

Theorem 3.5.1. For any choice of constants c1, c2, . . . , ck ∈ C, the oper-
ator L = I − c1σ − c2σ

2 − · · · − ckσk is invertible on S+, and the set of
preimages L−1(Vk) is a k-dimensional subspace of S+.

Proof. To prove the invertibility of L on S+ we show that any choice of se-
quence y ∈ S+ has a unique preimage s ∈ S+. For this, define the complex-
valued function ψ on N by ψ(n) = yn, the nth term of the given sequence
y, and also α = (yk−1, . . . , y0). Then L[s] = y encodes the initial value
problem

sn − c1sn−1 − c2sn−2 − · · · − cksn−k = ψ(n) ; ST
0 = α,

which we know always has a unique solution s ∈ S+. This proves that there
exists a unique s ∈ S+ with L[s] = y. Since the restriction of L−1 to the
k-dimensional subspace Vk must be invertible, L−1(Vk) is a k-dimensional
subspace of S+.

Applying this result to (3.11), we obtain

(3.12) s ∈ S+ is a solution to (L) ⇐⇒ s ∈ L−1(ψ) + L−1(Vk).

Geometrically, this means that the set of solutions to (L) forms a k-dimensional
hyperplane, a translate of a k-dimensional subspace by a single vector. Al-
gebraically, this means that, as we discussed in Section 3.2, we can find the
general solution to (L) by first finding a particular solution to L[s] = ψ and
then adding the general solution to the homogeneous equation L[s] = 0.
Once the general solution is known, any initial value problem can be solved
by plugging in the initial values. The technique in Theorem 3.3.1 can be
used to find a particular solution for equations with forcing functions of
the form ψ(n) = λnp(n). However, there’s no general algorithm that gives
a particular solution in closed form, and in fact, some classes of linear
recurrences don’t even have a closed-form solution [47, 136].

We apply this theory to solve the initial value problem

s0 = 0 , s1 = 1 , sn = 4sn−1 − 4sn−2 + 3n(n − 1) ,

where ψ(n) = λnp(n) for λ = 3 and p(x) = x − 1, a polynomial of degree
d = 1. Using Theorem 3.3.1, since λ1 = 2 is the only root of ch(x) = (x−2)2

and λ = λ1, then δ = 0, and there is a particular solution of the form

vn = 3nq(n)

50 3. Finite Difference Equations

for some polynomial q(x) with deg(q) ≤ deg(p) = 1. A particular solution
〈vn〉 can be constructed using the method in the theorem. For this, ch(3) =
1 and ch′(3) = 2, which gives

t0 = ch(3) = 1 and t1 = 2ch(3) − 3ch′(3) = −4 .

Since p1 = 1, p0 = −1, the coefficients of q(x) satisfy the associated system
of equations [

1 0
4 1

](
q1

q0

)
= λ2

(
1
−1

)
=

(
9
−9

)
,

giving q1 = 9 and q0 = −4q1−9 = −45, which means that vn = 3n(9n−45)
is a particular solution to the recurrence. Although 〈vn〉 doesn’t satisfy
the initial conditions, every solution to the recurrence has the form sn =
hn +vn, where hn = (αn+β)2n is the general solution to the homogeneous
recurrence. From the initial conditions,

0 = s0 = (α · 0 + β)20 + (9 · 0 − 45)30 ,

1 = s1 = (α · 1 + β)21 + (9 · 1 − 45)31 ,

which together yield β = 45, α = 19
2 , and sn = (19

2 n +45)2n + 3n(9n− 45).

3.6 Formal Power Series

We’ve already used polynomials in σ, and now we want to go one step
further and discuss formal power series in the linear operator σ. The adjec-
tive “formal” is used because we aren’t concerned with convergence of the
power series but rather treat it as a purely formal object. In this chapter
we concentrate on the theory of formal power series, and this will form the
foundation for the next chapter on generating functions. The interested
reader should consult Ivan Niven’s paper [121] for a good introduction to
the application of formal power series to number theory and combinatorics.

Definition 3.6.1. A formal power series in the variable x is an infinite
sum

γ =
∑
i≥0

aix
i

with coefficients ai in C. Two formal power series are equal iff all corre-
sponding coefficients are equal.

Note that a polynomial in x is a power series whose coefficients are zero
after some point. Because of this, a formal power series can be thought
of as an “infinite” polynomial. This is exactly the point of view taken for
the operations of addition and multiplication of formal power series: For

3.6 Formal Power Series 51

γ1 =
∑

i≥0 aix
i and γ2 =

∑
i≥0 bix

i, their sum is

γ1 + γ2 =
∑
i≥0

(ai + bi)xi .

The product of power series defined
here is called a convolution. Ex-
ercises 3.20 to 3.25 form a series of
exercises on convolution.

For multiplication of power series,
we also mimic what happens with
polynomials. The product γ1 · γ2

has the constant term a0b0; the
coefficient of x in the product is
a0b1 +a1b0; the coefficient of x2 is a0b2 +a1b1 +a2b0, and so on. This leads
to the following general formula for the product of two power series:

(3.13) γ1 · γ2 =
(∑

i≥0

aix
i
)(∑

j≥0

bjx
j
)

=
∑
n≥0

(∑
i+j=n

aibj

)
xn .

An important point to note is that since there are only n + 1 pairs of
indices i, j that sum to n, each coefficient on the right side is a finite sum
of products aibj in C, and as such is a complex number. This means that the
product γ1γ2 is a formal power series. Using these definitions for addition
and multiplication, formal power series behave as polynomials in many
respects, and Theorem 3.6.1 below summarizes the algebraic properties of
the integral domain of formal power series. To get there we will take
a detour through a proof technique called the finiteness argument, which
explains a good deal about the way formal power series behave algebraically.
Given any formal power series γ =

∑
aix

i, we define its partial sums just
as in calculus: for any nonnegative integer d, the dth partial sum is the
polynomial γd =

∑d
i=0 aix

i. As an example, let us use partial sums to
investigate the computation of the coefficients in γ2. From the definition of
multiplication, the 0th coefficient of γ2 is a2

0; the first coefficient is 2a0a1;
the second is a2

1+2a0a2; and so on. Compare this to the sequence of squares
of the partial sums:

γ2
0 = a2

0 ,

γ2
1 = a2

0 + 2a0a1x + a2
1x

2 ,

γ2
2 = a2

0 + 2a0a1x + (a2
1 + 2a0a2)x2 + 2a1a2x

3 + a2
2x

4 ,

· · · .

What happens is that the 0th coefficient of γ2 is the same as that of γ2
d

for all d; the first coefficient of γ2 is the same as the first coefficient of
γ2

d for d ≥ 1; the second coefficient of γ2 is the same as that of γ2
d for

d ≥ 2. (We will prove that this pattern continues.) This is what we refer to
as the Finiteness Argument. It allows us to reduce any question about
finitely many coefficients of a formal power series to a question about the
coefficients of a well-chosen partial sum.

52 3. Finite Difference Equations

For example, the statement

“The 17th coefficient of γ2 is positive.”

can be checked by testing the 17th coefficient of any γ2
d with d ≥ 17, and

the statement can not be checked by looking at the 17th coefficient of γ2
16.

In a similar way, consider a statement such as

“All the coefficients of γ2 are positive.”

If we can show that for every d ≥ 0 the first d coefficients of γ2
d are positive,

then we could prove this statement as well.
The same ideas apply to more complicated expressions in more than one

formal power series. For example, for power series γ, δ, ε, the nth coefficient
of 3δ − 4γε4 + ε coincides with the nth coefficient of the polynomial 3δd −
4γdε

4
d + εd for any d ≥ n. Writing this more succinctly, for ψ(x, y, z) =

3y − 4xz4 + z, the nth coefficient of ψ(γ, δ, ε) equals the nth coefficient of
ψ(γd, δd, εd) for all d ≥ n.

The Finiteness Argument
Let Ψ(x1, . . . , xt) be a polynomial in the variables x1, . . . , xt.
Let γ1, . . . , γt be formal power series in x, and for each i let (γi)d denote
the dth partial sum of γi.
Then for each n, the nth coefficient of Ψ(γ1, . . . , γt) coincides with the
nth coefficient of the polynomial Ψ((γ1)d, . . . , (γt)d) for all d ≥ n.

The idea behind the proof of the Finiteness Argument is the following.
If we first consider the most basic polynomials in two variables,

Ψ1(x1, x2) = x1 + x2 and Ψ2(x1, x2) = x1x2 ,

and two power series γ1, γ2, the conclusion of the Finiteness Argument for
each of Ψ1(γ1, γ2), Ψ2(γ1, γ2) follows from the respective definitions of ad-
dition and multiplication for power series. Since the arithmetic operations
inherent in the polynomial Ψ form a finite sequence of additions and mul-
tiplications of pairs of formal power series, the result follows by induction
on the number of operations used to build up to Ψ(γ1, . . . , γt).

The Finiteness Argument is a useful way to see that algebraic properties
of polynomials transfer to the same properties for formal power series.

Theorem 3.6.1. The set of formal power series in x (with coefficients in
R or C) forms an integral domain under the operations of addition and
multiplication. This means that the following properties hold:
(a) The operations of addition and multiplication satisfy the associative

and commutative laws, and also satisfy the usual distributive law of
multiplication over addition.

(b) The constant polynomial 0 is the additive identity.

3.6 Formal Power Series 53

(c) Every power series has an additive inverse, obtained by negating all
of its coefficients.

(d) The constant polynomial 1 is the multiplicative identity.
(e) Whenever the product γ1 ·γ2 equals the zero power series, at least one

of the factors γi must equal zero.

Proof. We’ll prove that the distributive law holds and then just say that
all other properties can be proved in the same manner. Let γ, δ, and ε
be three arbitrary formal power series in x. The distributive law says that
γ(δ + ε) = γδ + γε. This is an infinite string of statements asserting an
equality between the nth coefficient of γ(δ + ε) and the nth coefficient of
γδ + γε. Fix any n ≥ 0. Since polynomial multiplication distributes over
polynomial addition, for every d ≥ n we have the partial sum arithmetic
γd(δd + εd) = γdδd + γdεd. Therefore, the Finiteness Argument implies that
γ(δ + ε) = γδ + γε, proving that the distributive law does hold for power
series.

We use the modifier finiteness because the argument reduces a question
about the infinitely many coefficients in a formal power series to the anal-
ogous question for its partial sums that are polynomials or finite power
series. There’s a more sophisticated finiteness argument that involves the
substitution of polynomials into power series. For example, if we substitute
the polynomial x2 into the power series

(1 + 3x + 5x2 + · · ·) =
∑
i≥0

(2i + 1)xi ,

we would expect to get the power series

(1 + 3x2 + 5x4 + · · ·) =
∑
i≥1

(2i + 1)x2i .

Substituting the polynomial x+x2 into the same power series should yield

1 + 3(x + x2) + 5(x + x2)2 + 7(x + x2)3 + · · ·
= 1 + 3x + 8x2 + 17x3 + 35x4 + · · · .

This type of substitution works because the coefficient of the xn term in
the new power series is a finite sum of monomials.

More precisely, consider any power series γ =
∑

i≥0 aix
i and a polyno-

mial P (x) with zero constant term. Because the constant term of P (x) is
zero, the exponent of every term in the power P (x)i is at least i. Thus, in
the expansion of

γ(P (x)) = a0 + a1P (x) + a2P (x)2 + · · · ,

no summand aiP (x)i with i > n can contribute to the xn term. This
shows two things: that the xn term in γ(P (x)) is a finite sum of monomials

54 3. Finite Difference Equations

(proving that γ(P (x)) is a well-defined formal power series) and that the nth

term of γ(P (x)) is the same as the nth term of the polynomial γd(P (x)) for
each d ≥ n. This allows the following extension of the Finiteness Argument:

The Extended Finiteness Argument
Let Ψ(x1, . . . , xt) be a polynomial in the variables x1, . . . , xt.
Let γ1, . . . , γt be formal power series in x.
Let P1(x), . . . , Pt(x) be polynomials with zero constant term.
Then

Ψ(γ1(P1), γ2(P2), . . . , γt(Pt))

is a well-defined power series whose nth term coincides with the
nth term of the polynomial

Ψ((γ1)d(P1), (γ2)d(P2), . . . , (γt)d(Pt)) , for each d ≥ n.

In Theorem 3.6.1 the set of formal powers series was shown to be an
integral domain, so called because it has the same algebraic properties as
the integers. Unlike what happens in Z, the next result shows that there
are many power series that have multiplicative inverses.

Theorem 3.6.2. Let P (x) be a polynomial in x with zero constant term.
Then Γ =

∑
i≥0 P (x)i is a well-defined formal power series and Γ is the

multiplicative inverse of 1 − P (x) in the integral domain of formal power
series. We denote this inverse by 1/(1 − P (x)).

Proof. We have already proved that Γ is well-defined. To show that Γ is
invertible, set Ψ(x1, x2) = x1x2 and

γ1 = 1 − x ; γ2 =
∑
i≥0

xi ; P1(x) = P2(x) = P (x) .

Then for each d ≥ 1, the dth partial sums of γ1 and γ2 are (γ1)d = 1 − x
and (γ2)d = 1 + x + · · · + xd. Polynomial multiplication gives

(γ1)d · (γ2)d = 1 − xd+1

and
Ψ((γ1)d(P), (γ2)d(P)) = 1 − P d+1 .

Since the 0th and dth terms of Ψ((γ1)d(P), (γ2)d(P)) are therefore 1 and 0
respectively, from the Extended Finiteness Argument we have

1 = Ψ(γ1(P), γ2(P)) = (1 − P (x))
∑
i≥0

P (x)i,

as required.

3.6 Formal Power Series 55

Using P (x) = λx in the last result we have the following theorem.

Theorem 3.6.3 (The Geometric Power Series). For non-zero λ ∈ C,
the inverse of 1 − λx is

(3.14)
1

1 − λx
=

∑
n≥0

λnxn .

When λ is restricted to be a real number and x satisfies |λx| < 1, The-
orem 3.6.3 becomes the formula for the geometric series from calculus.
In calculus it’s a statement about a function defined within its radius of
convergence |x| < |λ|−1, and (3.14) has no meaning outside its radius of
convergence. For us,

∑
n≥0 λnxn is a purely formal object that algebraically

equals 1/(1 − λx).

3.6.1 Formal differentiation

We next use a process of formal differentiation to develop a formal power
series for the rational function (1−λx)−m, which is the inverse of (1−λx)m.
They will be used in the next chapter on generating functions.

The formal derivative of a power series γ =
∑

i≥0 aix
i is defined to

be the formal power series

(3.15) D(γ) =
∑
i≥1

iaix
i−1.

A direct verification shows that the usual sum rule and the product rule
also hold for formal derivatives. Using the definition of convolution,(1

1 − x

)2

=
(∑

k≥0

xk
)2

=
∑
n≥0

(∑
i+j=n

12 xn
)

=
∑
n≥0

(n + 1)xn = D
(∑

n≥0

xn
)

= D
(1

1 − x

)
,

and induction gives (refer to Exercise 3.35)

(3.16) Dj
(∑

n≥0

xn
)

=
j!

(1 − x)j+1
,

where 0! = 1 and D0 is the identity operator. Letting γ =
∑

n≥0 xn, we
have

(m − 1)!
(1 − x)m

= Dm−1(γ) = (m − 1)!
∑
n≥0

(
n + m − 1

n

)
xn ,

and

56 3. Finite Difference Equations

(3.17)
1

(1 − λx)m
=

∑
n≥0

(
n + m − 1

n

)
(λx)n ,

the power series for (1 − λx)−m when m is a positive integer. This can be
called a generalized Binomial Theorem. The name makes sense because if
we define the generalized binomial coefficient

(
r
n

)
for any rational r

and natural number n by(
r

n

)
=

r(r − 1) · · · (r − n + 1)
n!

,

then for a negative integer r = −m we have(
−m

n

)
= (−1)n

(
m + n − 1

n

)
,

and (3.17) becomes

(1 + x)−m =
∑
n≥0

(
−m

n

)
(−1)n(−x)n =

∑
n≥0

(
−m

n

)
xn .

In [121], the Generalized Binomial Theorem

(3.18) (1 + x)r =
∑
n≥0

(
r

n

)
xn

is proved for all rational r.
As often happens in mathematics, a good idea like formal power series can

be used in a wide variety of areas. Formal power series with real coefficients
are widely used in combinatorics (for example, refer to [153, 154]), and for-
mal power series with complex coefficients have applications in physics and
statistics. For these applications as well as for technical reasons, the defi-
nition of convolution for power series with complex coefficients is defined
slightly differently. For other applications, such as the theory of automata
and formal languages (refer to [143]), formal power series are further gen-
eralized to allow the coefficients to lie in a ring or semi–ring rather than in
a field.

3.6.2 An application of formal power series

We now return to the question of inverting the operator L = I − c1σ −
c2σ

2 −· · ·− ckσk, where σ is the shift operator σ(〈sn〉) = 〈0, s0, s1, . . . 〉 on
S+, the space of infinite sequences of complex numbers. In order to make
sense of this we need to define the formal power series Γ =

∑
aiσ

i for

3.6 Formal Power Series 57

any choice of ai ∈ C in such a way that it is a linear operator on S+. For
s ∈ S+, it would be natural to interpret Γ(s) as an infinite formal sum of
the sequences

a0s + a1σ(s) + a2σ
2(s) + · · · .

Writing these summand sequences as rows in an infinite array,

a0s0 , a0s1 , a0s2 , a0s3 , · · ·
0 , a1s0 , a1s1 , a1s2 , · · ·
0 , 0 , a2s0 , a2s1 , · · ·
...

...
...

... · · ·

,

each column has only finitely many non-zero terms, and so the sum of each
column is a complex number. This is the motivation for defining Γ(s) to be
the sequence whose nth term is

a0sn + a1sn−1 + · · · + ans0 = (a0, a1, . . . , an) · (sn, sn−1, . . . , s0) .

In Exercise 3.34 you prove that the function Γ defined in this way is a linear
operator on S+.

Next suppose the operators Γ1 =
∑

aiσ
i and Γ2 =

∑
biσ

i are equal on
S+. This means that Γ1(s) = Γ2(s) for every s ∈ S+, which is equivalent
to requiring that Γ1 − Γ2 be the zero operator on S+. In particular this
must be true for the sequence s∗ whose only non-zero term is its nth term,
with s∗n = 1. Since the nth term of (Γ1 − Γ2)(s∗) is an − bn = 0, and this
argument hold for each n, Γ1 and Γ2 must be equal as power series. What
we’ve just shown is that algebraic identities involving formal power series
are also valid identities for the linear operators they represent. For example,
if Γ1Γ2 = 1 holds in the ring of formal power series, then Γ1Γ2 = I holds
for the linear operators, and Γ2 is the multiplicative inverse of Γ1.

As an example, let’s use the shift operator to solve the first–order recur-
rence

(3.19) sn+1 = λsn + n2 with s0 = α0 .

We first shift indices to get sn − λsn−1 = (n − 1)2 and then rewrite the
recurrence as L[s] = ψ, where ψ = 〈α0, 0, 1, 4, 9, . . . 〉 and L = I − λσ.
Applying Theorem 3.6.2 with P (x) = λx yields

L−1 = I + λσ + λ2σ2 + λ3σ3 + · · · =
∑
i≥0

λiσi ,

and the solution is s = L−1(ψ), whose nth term is

sn = (α0, 0, 1, 4, . . . , (n − 1)2) · (λn, λn−1, . . . , λ, 1) .

58 3. Finite Difference Equations

Therefore, the solution to (3.19) is

sn = α0λ
n +

n−2∑
i=0

(n − 1 − i)2λi .

(Compare this with Theorem 3.1.2 and our analysis in Section 3.2.1.)
In this example, finding the inverse of L was relatively easy. For higher

order recurrences the situation is more difficult. For instance, in the second–
order case we must consider the linear operator

L = I − c1σ − c2σ
2 ,

and Theorem 3.6.2 gives

L−1 =
∑
i≥0

(c1σ + c2σ
2)i = I + (c1σ + c2σ

2) + (c1σ + c2σ
2)2 + · · · .

Setting L−1 =
∑

i≥0 aiσ
i we obtain

a0 = 1 ,

a1 = c1 ,

a2 = c2
1 + c2

a3 = c3
1 + 2c1c2 ,

a4 = c4
1 + 3c2

1c2 + c2
2 ,

a5 = c5
1 + 4c3

1c2 + 4c1c
2
2 ,

...

The pattern among the ai seems to be a0 = 1, a1 = c1, and ai+2 = c1ai+1+
c2ai. The techniques in the next chapter will show that the coefficients of
L−1 do always satisfy the original recurrence. (Refer to Exercise 4.8.)

3.7 Exercises

Ex 3.1. Let γ : S+ → S+ be defined by

γ(s0, s1, s2, . . .) = 〈a, s0, s1, s2 . . . 〉 for some a ∈ C.

Show that γ is linear iff a = 0.

Ex 3.2. Consider the (right) shift operator on S, σ(〈sn〉) = 〈0, s0, s1, . . . 〉
.

(a) Verify that σ is a linear transformation on S.

3.7 Exercises 59

(b) Prove that the left shift operator is an inverse for σ, and therefore σ
is an invertible operator on S.

Ex 3.3. Show that S+, the space of singly infinite sequences, is infinite-
dimensional by finding n linearly independent vectors for every n ≥ 1.
Verify that for each k, Vk = {s ∈ S+ : sn = 0 for all n ≥ k } is a k-
dimensional subspace of S+.

Ex 3.4. Show that the Fibonacci sequence 〈fn〉 and the shifted sequence
〈fn−1〉 are linearly independent. This means that every solution to the
Fibonacci recurrence sn = sn−1+sn−2 can be written as αfn−1+βfn, where
the scalars α and β depend on the initial conditions. In particular, find a
formula for the Lucas numbers (which satisfy the Fibonacci recurrence
with L0 = 2, L1 = 1) in the form Ln = αfn−1 + βfn. Are there integer
sequence solutions to sn = sn−1 +sn−2 for which α and β are not integers?

Ex 3.5. For this exercise, define a full solution to a kth order homoge-
neous difference equation to be any solution that is not a solution to any
lower order difference equation.

(a) Show that if s is a full solution to a kth order homogeneous difference
equation, then the sequences s, σ(s), . . . , σk−1(s) are linearly inde-
pendent.

(b) Show that 〈2n〉 is not a full solution to sn = 4sn−1−4sn−2, but 〈n2n〉
is a full solution to the recurrence.

(c) Show that every solution to sn = 4sn−1 − 4sn−2 can be written as

sn = a1n2n + a2(n − 1)2n−1 ,

for some constants a1, a2.
(d) Show that if 〈sn〉 is a full solution to a kth order homogeneous dif-

ference equation, then every solution 〈xn〉 to the difference equation
can be written as

xn =
k−1∑
i=0

ai sn−i ,

where the ai’s are constants.

Ex 3.6. For the polynomial ch(x) = xk − c1x
k−1 − · · · − ck and any

i = 1, . . . , k show that ti =
∑k

j=1 cj(−j)iλk−j can be written as a lin-
ear combination of ch(x), D(ch)(x), . . . , D(j)(ch)(x).

Ex 3.7. Solve

sn = −3sn−1 − 2sn−2 + (−1)n for n ≥ 2, with s0 = 2 , s1 = −3 .

Ex 3.8. For this problem, consider the recurrence

sn = 5sn−1 − 6sn−2 + 2n n .

60 3. Finite Difference Equations

(a) Find the general solution to the homogeneous equation.
(b) Show that vn = −2n(n2 + 7n) is a particular solution to the recur-

rence.
(c) Solve the initial value problem with s0 = 5, s1 = 4.
(d) Solve the initial value problem with s0 = 4, s1 = 5.

Ex 3.9. For this problem, consider the recurrence

sn = 5sn−1 − 6sn−2 + (−2)n .

(a) Find a particular solution to the recurrence.
(b) Solve the initial value problem with s0 = 0, s1 = −7/5.
(c) Solve the initial value problem with s0 = 1, s1 = 2.

Ex 3.10. Find the general solution to the recurrence

sn = 5sn−1 − 6sn−2.

Ex 3.11. Find a particular solution to the recurrence

sn = 5sn−1 − 6sn−2 + n 3n .

Ex 3.12. Solve the initial value problem

sn = 5sn−1 − 6sn−2 + n 3n

with s0 = 1 and s1 = 2.

Ex 3.13. For any fixed α0, α1, solve the initial value problem

sn = 6sn−1 − 9sn−2 + 2nn ,

s0 = α0 , s1 = α1 .

Ex 3.14. For λ = 3, find a particular solution to

sn = 6sn−1 − 9sn−2 + λnn .

Ex 3.15. Solve the initial value problem

s0 = 1 , s1 = 2 , sn = 2sn−1 + 4sn−2 − 8sn−3 + ψ(n) ,

for each of the following input functions:

ψ(n) = (−1)nn ; ψ(n) = n2 ; ψ(n) = (−2)nn ; ψ(n) = 2n .

Ex 3.16. Use the Finiteness Argument to show that the ring of formal
power series has no zero divisors; that is, if γ1, γ2 are two power series
whose product is the zero polynomial, then at least one of γ1, γ2 is the zero
polynomial.

3.7 Exercises 61

Ex 3.17. Let γ1 and γ2 be two formal power series in x. Show that
γ1(γ2(x)) makes sense as a formal power series in x, provided the con-
stant term of γ2 is zero. Check that the substitution of γ2 = 1 + x (which
has non-zero constant term) doesn’t work.

Ex 3.18. Let Ψ(γ1, . . . , γt) be a polynomial in finitely many power series
γ1, . . . , γt and let P be a polynomial in x with zero constant term. Use the
Extended Finiteness Argument to show that first expanding Ψ and then
substituting P for x results in the same power series as first substituting
P for x and then expanding ψ.

Ex 3.19 (The Quadratic Formula for Power Series). If α =
∑

i≥1 aix
i,

where each ai is real, show that there exists a unique β =
∑

i≥1 bix
i such

that β satisfies (1 + β)2 = 1 + α (and we can write 1 + β =
√

1 + α). Use
this to prove that whenever γ1 =

∑
i≥0 aix

i and γ2 =
∑

i≥0 bix
i are power

series with real coefficients and a2
0 − 4b0 ≥ 0, then the equation

x2 + γ1x + γ0 = 0

has the two solutions in power series given by

−γ1 ±
√

γ2
1 − 4γ2

2
.

The process of convolution appeared when we defined multiplication of
power series, and it occurs in many other contexts in mathematics. The
next sequence of exercises (Exercises 3.20 to 3.25) explains convolution
and gives some examples. The definitions of a group and a ring are needed
to work most of these exercises.

Ex 3.20. Show that the product of two formal power series can be defined
as ⎛⎝∑

i≥0

aix
i

⎞⎠⎛⎝∑
j≥0

bjx
j

⎞⎠ =
∑
n≥0

⎛⎝∑
l≥0

albn−l

⎞⎠xn ,

where bn−l is considered to be zero for negative subscripts.

Ex 3.21. Let G be an additive abelian group and let φ, ψ : G → R be func-
tions that are zero for all but finitely many g ∈ G. Define the convolution
φ ∗ ψ by

(φ ∗ ψ)(g) =
∑
h∈G

φ(h)ψ(g − h) .

Show that
(a) φ ∗ ψ is well-defined (meaning that the sum above is finite);

62 3. Finite Difference Equations

(b) (φ ∗ ψ)(g) = 0 for all but finitely many g ∈ G;
(c) φ commutes with ψ; that is, φ ∗ ψ = ψ ∗ φ.

Ex 3.22. Let G be as in Exercise 3.21 and consider the set R of all functions
G → R that are zero for all but finitely many elements of G.

(a) Show that R is a commutative ring under the operations of function
addition and convolution.

(b) Show that the function that is 1 at the additive identity of G and is
zero elsewhere is a multiplicative identity for this ring.

(c) Either show that R is guaranteed to have no zero divisors or find a
group G for which the associated R does have zero divisors.

Ex 3.23. As usual, R[x] denotes the set of polynomials in the variable x
with real coefficients. For any polynomial in R[x], define a corresponding
function on N whose value at i ∈ N is the ith coefficient of the polynomial.
Use this to show that R[x] is the ring defined in Exercise 3.22 with G = N.

Ex 3.24. Consider the set R = {φ : Z → R | φ(n) = 0 for all n < 0}.
Define the convolution of two such functions by

(φ ∗ ψ)(n) =
∑
i∈N

φ(i)ψ(n − i) .

Show that R forms a commutative ring under the operations of usual func-
tion addition and convolution. Identify an identity element for convolution.
Note: This ring R is the ring of formal power series with real coefficients.

Ex 3.25. Let f, g : R → R be two integrable functions. Define the convo-
lution of f and g by

(f ∗ g)(t) =
∫ +∞

−∞
f(u)g(t − u)du .

Without worrying about the convergence of the integral or the integrability
of the resulting function, explain how this is a continuous analog of the
convolutions defined above. Show that this serves as multiplication and
that the set of integrable functions is a ring. If you know enough, worry
about the convergence of the integrals. If you know what the Dirac Delta
function is, show that it is an identity for convolution.

We have designed the next string of exercises (Exercises 3.26 to 3.34) to
give another perspective on the finiteness arguments used to verify the
algebraic properties of power series. These can be seriously attempted
only by a student who has had a course in the foundations of real analysis.
Other students are encouraged to read through these exercises.

Ex 3.26. Let R[x] be the set of polynomials in x with real coefficients.
Given a non-zero polynomial in R[x], define its order ord(f) to be the

3.7 Exercises 63

degree of the lowest term with a non-zero coefficient. Thus, the order of
a polynomial is 0 unless its constant term is zero; if the constant term is
zero, the order is 1 unless there is no linear term; and so on. Show that the
order of f is m ≥ 1 iff x = 0 is a root of f with multiplicity m.

Ex 3.27. Pick your favorite constant c > 1 and define a function | · | :
R[x] → N by |0| = 0 and |f | = c− ord(f) for non-zero f . Show that this
absolute value satisfies the following familiar properties:

(a) |f | ≥ 0 and |f | = 0 iff f = 0 (Positive definiteness).
(b) |f + g| ≤ |f | + |g| (The triangle inequality).
(c) |f − g| = |g − f | (Symmetry).
(d) |fg| = |f ||g| (Multiplicativeness).

Ex 3.28. Review the construction of the real numbers R from the ratio-
nal numbers Q using Cauchy sequences, paying careful attention to the
properties of the absolute value that are used to make this construction
work. Now define a Cauchy sequence of polynomials in R[x] to be a se-
quence 〈fn〉 of polynomials such that for every ε > 0, there is some M such
that |fn−fm| < ε whenever m, n ≥ M (where | · | is defined in the previous
exercise). Next, define two Cauchy sequences 〈fn〉 and 〈gn〉 of polynomials
to be equivalent if for every ε > 0 there is an M such that |fn − gm| < ε for
m, n ≥ M . Show that this is an equivalence relation on the set of Cauchy
sequences of polynomials. To do this, you do not need to have any idea of
what a Cauchy sequence looks like; the only thing you need to use are the
properties of the absolute value.

Ex 3.29. Show that every Cauchy sequence of polynomials is equivalent
to a unique sequence 〈gd〉 of polynomials such that deg gd = d and gd =
gd−1 + adx

d for all d ≥ 1, in other words, a sequence such that gd is the
partial sum of a formal power series in x. Conclude that equivalence classes
of Cauchy sequences of polynomials are the same objects as formal power
series.

Ex 3.30. Mimicking the construction of R from Q, show how to define
arithmetic operations on equivalence classes of Cauchy sequences of poly-
nomials and prove that these are well-defined (independent of which equiv-
alent sequences are used.) Show that these operations obey the same alge-
braic laws as they do when applied to polynomials. (The last exercise says
that these are really operations on formal power series, but be sure to work
this exercise using only properties of | · |.)

Ex 3.31. Show that the arithmetic operations defined in the last exercise
are the same ones we defined for formal power series.

Ex 3.32. This is a generalization of Exercise 3.27 from polynomials to
power series. Define an absolute value on S+ as follows. Given a non-zero
sequence 〈xn〉, define the order of 〈xn〉 (which we denote by ord(xn)) to be

64 3. Finite Difference Equations

the first n for which xn = 0. Choosing your favorite c > 1 again, let

‖〈xn〉‖ = c− ord(xn).

Show that this absolute value is positive definite, symmetric, and satisfies
the triangle inequality.

Ex 3.33. A space with an absolute value such as the ones above is called
a metric space. It is called a complete metric space if every Cauchy
sequence of elements from the space has a limit in the space. Show that S+

is complete by showing that if we are given a sequence 〈xi〉 of sequences
〈xi

n〉 that is Cauchy in the sense that for every ε > 0 there is an I with the
property that ‖xi − xj‖ < ε for i, j ≥ I, then there is a sequence y such
that limi→∞ xi = y. (This limit involves another epsilon–I definition, this
time with ‖ · ‖.)
Ex 3.34. (This exercise requires the preceding exercises.)

(a) Show that if lim
n→∞ fn = Γ, where the fn are polynomials in σ and

Γ is a power series in σ, then for any sequence s ∈ S+, we have
that lim

n→∞ fn(s) exists and is equal to the sequence Γ(s) as defined in
Section 3.6.2.

(b) Show that any formal power series in σ is a linear operator on S+.

Ex 3.35. Use induction to show that for all j ≥ 0,

Dj
(∑

n≥0

xn
)

=
j!

(1 − x)j+1
,

where 0! = 1 and D0 is the identity operator.

Ex 3.36. Let Dj denote the ordinary jth derivative with respect to x. For
any formal power series S(x) =

∑
k≥j skxk show that for all j ≥ 1,

Dj
(
S(x)

)
=

∑
k≥j

skDj(xk) = j!
∑
k≥0

(
k + j

j

)
sk+jx

k.

Ex 3.37. For rational numbers r, s, use the fact that (1 + x)r+s = (1 +
x)r(1 + x)s to show that the binomial coefficients satisfy(

r + s

k

)
=

∑
i+j=k

(
r

i

)(
s

j

)
for all k ≥ 0 .

Also use (1 − x2)r = (1 − x)r(1 + x)r to get(
r

n/2

)
= (−1)n/2

n∑
k=0

(
r

k

)(
r

n − k

)
for even n .

3.7 Exercises 65

Ex 3.38. For L = 1−2σ +σ2, show that L−1 =
∑

i≥0(i+1)σi. Show that
the inverse of 1− σ − σ2 equals

∑
i≥0 fi+1σ

i, where fi is the ith Fibonacci
number. From this calculation derive a representation of the Fibonacci
numbers as sums of binomial coefficients.

Ex 3.39. Show that D(γ) = 0 implies that the power series γ is a constant,
and use this to show that D(γ1) = D(γ2) implies that γ1 = γ2 + c for some
constant c. Further show that the general solution to D(γ) =

∑
n≥0 anxn

is γ = c +
∑

n≥1

an−1

n
xn.

Ex 3.40 (Exponential power series). Show that D(γ) = γ has the

solution γ =
∑

n≥0

1
n!

xn, the Taylor series for ex. Use this fact to show

that γ =
∑

n≥0

1
n!

(−x)n is the multiplicative inverse of γ =
∑

n≥0

1
n!

xn.

Hint: Multiply by e−x.

Ex 3.41. (a) Use the product rule for formal differentiation to show that
for any formal power series γ, e−xD(γ) − γe−x = D(e−xγ).

(b) Solve the formal equation D(γ) − γ =
∑

n≥0

1
n!

xn subject to the

condition that γ = 1 +
∑

n≥1 anxn.
Hint: Multiply both sides by e−x.

4
Generating Functions

The term generating func-
tion is said to have been
coined by Pierre-Simon
Laplace (1749–1827), but it
formed an integral part of
Abraham de Moivre’s [48]
1730 paper on linear recur-
rences.

This chapter is devoted to the study
of generating functions, which we use
for solving difference equations. After
some motivation for the term “gener-
ating function” is given in the first sec-
tion, the remainder of the chapter con-
centrates on using generating functions
to solve recurrences. We include exam-
ples from combinatorics and number
theory.

4.1 Counting Strings with Some Restrictions

To introduce generating functions we begin with a combinatorial problem
whose solution uses generating polynomials. For any n ≥ 0, an ordered list
of n symbols from some alphabet is called an n-string. The only 0-string
is the string with no elements, which is usually called the nullstring.

For the alphabet A = {x, y, z}, there are three 1-strings, the symbols in
the alphabet A. One way to obtain a listing of all 2-strings from A is to use
the formal algebraic sum obtained from the product (x+ y + z) · (x+ y+ z)

68 4. Generating Functions

according to the distributive law for multiplication,

(x + y + z) · (x + y + z) = (x + y + z)x + (x + y + z)y + (x + y + z)z
= xx + yx + zx + xy + yy + zy + xz + yz + zz.(4.1)

Since each 2-string appears exactly once as a summand on the right side
of (4.1), the polynomial (x + y + z) · (x + y + z) is said to generate the
2-strings. Using the commutative law and the laws of exponents, (4.1) can
be compressed to

(4.2) (x + y + z)2 = 1x2 + 2xy + 2xz + 2yz + 1y2 + 1z2 .

Although the compressed polynomial in (4.2) is no longer a complete listing
of 2-strings, it does encode some important information. For instance, the
term 2xy indicates that there are two 2-strings with one x and one y; 1z2

says that there is one 2-string that uses only the symbol z. In general, for
all n ≥ 0, the polynomial Pn(x, y, z) = (x + y + z)n generates all n-strings
formed using the alphabet A = {x, y, z}, and the coefficient of xiyjzk in
its compressed representation counts the number of n-strings that have i
x’s, j y’s, and k z’s.

When x = 1, y = 1, z = 1 is substituted into Pn(x, y, z), each summand
is 1, and accordingly, Pn(1, 1, 1) = 3n, the total number of n-strings. The
value of Pn(x, y, z) for other choices of the variables x, y, z can be used
to count the number of strings with certain characteristics. For instance,
suppose we want to calculate the four quantities s

(n)
00 , s

(n)
01 , s

(n)
10 , s

(n)
11 , where

each s
(n)
ij equals the number of n-strings in which the number of y’s is

congruent to i (mod 2) and the number of z’s is congruent to j (mod 2).
For example, for n = 2, from (4.1) we obtain

s
(2)
00 = |{xx, yy, zz}| = 3; s

(2)
01 = |{zx, xz}| = 2;

s
(2)
10 = |{yx, xy}| = 2; s

(2)
11 = |{zy, yz}| = 2.

Since each n-string is counted once in the numbers s
(n)
00 , s

(n)
01 , s

(n)
10 , s

(n)
11 , then

(4.3) 3n = (1 + 1 + 1)n = Pn(1, 1, 1) = s
(n)
00 + s

(n)
01 + s

(n)
10 + s

(n)
11

holds for all n ≥ 0. When we substitute x = 1, y = −1, z = 1 into
Pn(x, y, z), each string with an odd number of y’s is counted as negative.
Since strings with an odd number of y’s are counted in s

(n)
10 and s

(n)
11 , then

(4.4) 1 = (1 − 1 + 1)n = Pn(1,−1, 1) = s
(n)
00 + s

(n)
01 − s

(n)
10 − s

(n)
11 .

Similarly,

(4.5) 1 = (1 + 1 − 1)n = Pn(1, 1,−1) = s
(n)
00 − s

(n)
01 + s

(n)
10 − s

(n)
11

4.1 Counting Strings with Some Restrictions 69

and

(4.6) (−1)n = (1 − 1 − 1)n = Pn(1,−1,−1) = s
(n)
00 − s

(n)
01 − s

(n)
10 + s

(n)
11 .

The equations in (4.3) through (4.6) form a nonsingular system of four
equations in four unknowns, that can be solved to obtain all of s

(n)
00 , s

(n)
01 ,

s
(n)
10 , s

(n)
11 .

For example, consider the question of finding a formula for s
(n)
00 , calcu-

lating the number of n-strings that have an even number of y’s and an
even number of z’s. Actually identifying all n-strings with this property
would be a daunting task for large n. On the other hand, summing the four
equations (4.3) through (4.6) results in

3n + 2 + (−1)n = 4s
(n)
00 ,

and we have the exact formula

(4.8) s
(n)
00 =

3n + 2 + (−1)n

4
,

obtained without listing all permissible strings. Checking this formula for
n = 2, we see that xx, yy, zz is a complete listing of permissible strings and
(32 + 2 + (−1)2)/4 does equal 3. The values of Pn(1, y, z) for y, z ∈ {±1}
allowed us to do this computation.

We close this section with an indication of how recurrence techniques
from earlier chapters can also be used to calculate s

(n)
00 . To get a recurrence

that relates s
(n)
00 to some s

(i)
jk for earlier i < n, we decompose each n-string

into two substrings: its first character and the remaining string of length
n − 1. Any permissible n-string has one of three forms: Its first character
is x and the rest is a permissible (n − 1)-string; its first character is y and
the remaining (n−1)-string has an odd number of y’s and an even number
of z’s; its first character is z and the remaining (n − 1)-string has an even
number of y’s and an odd number of z’s. Among the n-strings counted in
s
(n)
00 there are s

(n−1)
00 strings of the first type, s

(n−1)
10 of the second type, and

s
(n−1)
01 of the third type. Therefore,

(4.9) s
(n)
00 = s

(n−1)
00 + s

(n−1)
10 + s

(n−1)
01 .

Similar arguments give

s
(n)
01 = s

(n−1)
01 + s

(n−1)
11 + s

(n−1)
00 ;(4.10)

s
(n)
10 = s

(n−1)
10 + s

(n−1)
00 + s

(n−1)
11 ;(4.11)

s
(n)
11 = s

(n−1)
11 + s

(n−1)
01 + s

(n−1)
10 .(4.12)

This approach to the problem is completed in Exercise 4.2.

70 4. Generating Functions

4.2 An Overview of the Generating Function
Technique

We’ve just shown how the polynomial Pn(x, y, z) = (x+y+z)n can be used
to generate all n-strings from the alphabet A = {x, y, z}. The remainder of
this chapter will consider generating functions in one variable. For a more
comprehensive discussion of generating functions and their applications the
reader is referred to [169]. Also, in [152] Richard Stanley gives a survey of
generating functions as used in combinatorics.

We first consider the simplest case, polynomial generating functions in
one variable. For this, recall that a polynomial in the variable x with com-
plex coefficients can be written in the form p(x) = s0 + s1x+ · · ·+ srx

r for
some complex constants s0, s1, . . . , sr. Complete knowledge of the polyno-
mial is equivalent to knowledge of its coefficients, the sequence s0, s1, . . . , sr.
In this way p(x) can be considered to be the generating polynomial for the
finite sequence 〈s0, s1, . . . , sr〉, and conversely the sequence 〈s0, s1, . . . , sr〉
is the sequence generated by the polynomial p(x). For example, the Bino-
mial Theorem says that

(1 + x)n =
n∑

k=0

(
n

k

)
xk, for any positive integer n

where the binomial coefficient
(

n

k

)
=

n!
k!(n − k)!

is the number of com-

binations of n things taken k at a time, and the polynomial pn(x) = (1+x)n

records the sequence
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
(and so each pn(x) can be viewed as

the generating function for the nth row of Pascal’s triangle). Because the
solution of an initial value problem is an infinite sequence, its generating
function is an infinite series rather than a polynomial unless the solution
sequence is eventually zero.

The Generating Function of a Sequence
The generating function for an infinite sequence 〈sn〉 is the formal
power series

S(x) =
∑
n≥0

snxn.

When the sequence is finite, say 〈s0, s1, · · · , sr〉 , its generating function
is the polynomial

s0 + s1x + · · · + srx
r .

As in Chapter 3, a generating function is a power series, an algebraic
object that can be formally manipulated using algebraic operations. The

4.2 An Overview of the Generating Function Technique 71

sum and product of the generating functions S(x) =
∑

n≥0 snxn and
T (x) =

∑
n≥0 tnxn are respectively

(4.13)

S(x) + T (x) =
∑
n≥0

(sn + tn)xn and S(x) · T (x) =
∑
n≥0

(n∑
j=0

sjtn−j

)
xn .

Remember that a formal power series is never evaluated at a specific value
of x = a unless it can be shown that the series is more than purely formal
by proving it converges on an open disk containing a.

In this chapter we develop the generating function technique for solving
recurrences, and the following examples demonstrate the method.
Example 4.2.1. (The general first–order homogeneous recurrence)
For λ ∈ C, the generating function S(x) for solutions to sn+1 = λsn satisfies

S(x) = s0 + x
∑
n≥0

sn+1x
n = s0 + x

∑
n≥0

λsnxn = s0 + λxS(x),

which can be solved for S(x) to get

(4.14) S(x) =
s0

1 − λx
.

By Theorem 3.6.3,

S(x) =
s0

1 − λx
=

∑
n≥0

s0λ
nxn ,

and equality of formal power series gives sn = s0λ
n, as expected. It is

worthwhile to take a minute to summarize the steps in this solution. We
first used the recurrence to find a rational form for the generating function
and then “expanded” this rational function into another power series. The
solution sequence is the sequence of coefficients of this power series.
Example 4.2.2. (The Fibonacci sequence) The Fibonacci generating
function is the formal power series F (x) =

∑
n≥0 fnxn, which satisfies

F (x) = f0 + f1x +
∑
n≥2

fnxn = x +
∑
n≥2

(fn−1 + fn−2)xn.

At this point a creative re-indexing can be performed to get

F (x) = x +
∑
n≥1

fnxn+1 +
∑
n≥0

fnxn+2 = x + x
∑
n≥0

fnxn + x2
∑
n≥0

fnxn ,

which can be rewritten as

F (x) = x + xF (x) + x2F (x).

72 4. Generating Functions

Collecting the terms containing F (x) and solving, we obtain

(4.15) F (x) =
x

1 − x − x2
,

which is more complicated than the same stage (4.14) of the last example,
and we use the technique of partial fractions from calculus to decompose
F (x) into the sum of two generating functions, each of which is a geometric
power series. (The general technique of partial fractions is developed in
Section 4.3.)

In order to decompose the rational function on the right side of (4.15)
into partial fractions, we find the roots of 1 − x − x2 = 0, which are

λ−1
1 =

−1 +
√

5
2

and λ−1
2 =

−1 −
√

5
2

,

and from λ−1
1 λ−1

2 = −1,

1 − x − x2 = −(λ−1
1 − x)(λ−1

2 − x) = (1 − λ1x)(1 − λ2x).

By partial fractions there exist constants A, B such that

(4.16) F (x) =
x

1 − x − x2
=

A

1 − λ1x
+

B

1 − λ2x
.

Before finding the constants A and B, we note that Theorem 3.6.3 allows
us to write the right side of (4.16) as the formal power series

F (x) =
∑
n≥0

(
Aλn

1 + Bλn
2

)
xn ,

and the uniqueness of formal power series implies

(4.18) fn = Aλ1
n + Bλ2

n, for all n ≥ 0 .

To find A and B return to (4.16). Since

(1 − λ1x)(1 − λ2x) = 1 − x − x2,

we have
x

1 − x − x2
=

A(1 − λ2x) + B(1 − λ1x)
1 − x − x2

.

Because these two rational expressions for F (x) have the same denomina-
tor, the numerators must also be equal, giving the polynomial equation

x = A(1 − λ2x) + B(1 − λ1x) .

As polynomials this implies

0 = A + B and 1 = −Aλ2 − Bλ1 ,

4.2 An Overview of the Generating Function Technique 73

and (4.18) becomes Binet’s Formula

fn =
1√
5

((1 +
√

5
2

)n

−
(1 −

√
5

2

)n)
.

Example 4.2.3. Consider the recurrence

(4.21) s0 = 2, s1 = 3, sn+2 = 6sn+1 − 9sn .

Its generating function is

S(x) =
∑
n≥0

snxn = s0 + s1x +
∑
n≥0

sn+2x
n+2

= 2 + 3x +
∑
n≥0

(6sn+1 − 9sn)xn+2

= 2 + 3x + 6x
∑
n≥0

sn+1x
n+1 − 9x2

∑
n≥0

snxn

= 2 + 3x + 6x
∑
n≥1

snxn − 9x2
∑
n≥0

snxn

= 2 + 3x + 6x(S(x) − 2) − 9x2S(x) ,

and

(4.22) (1 − 6x + 9x2)S(x) = 2 − 9x .

Therefore,

S(x) =
2 − 9x

1 − 6x + 9x2
=

2 − 9x

(1 − 3x)2
=

A

1 − 3x
+

B

(1 − 3x)2
,

and we can solve to get A = 3, B = −1. Using this and (3.17),

S(x) =
3

1 − 3x
− 1

(1 − 3x)2
= 3

∑
n≥0

3nxn −
∑
n≥0

(n + 1)(3x)n ,

and
sn = 3n+1 − (n + 1)3n = (2 − n)3n .

As noted earlier, the first step in these three examples was to represent
the generating function as a rational function. In each case its denomi-
nator bears a strong resemblance to the characteristic polynomial of the
recurrence, namely, it is the reciprocal polynomial

chR(x) = 1 − c1x − · · · − ckxk

of the characteristic polynomial

ch(x) = xk − c1x
k−1 − c2x

k−2 − · · · − ck.

74 4. Generating Functions

Before proving the general result, we consider one more example, a non-
homogeneous equation

(4.24) s0 = 1, s1 = 4, sn+2 = 6sn+1 − 9sn + 4(n − 1) .

As in the last example,

S(x) = 1 + 4x +
∑
n≥0

sn+2x
n+2

= 1 + 4x + 6x
∑
n≥1

snxn − 9x2
∑
n≥0

snxn + 4x3
∑
n≥0

nxn−1 − 4x2
∑
n≥0

xn .

At this point we want the rational representation of
∑

n≥0 nxn−1, which is
a special case of the following formula proved in Chapter 3:

(4.25)
1

(1 − λx)m
=

∑
n≥0

(
n + m − 1

n

)
(λx)n for any integer m ≥ 1 .

From this,

S(x) = 1 + 4x + 6x(S(x) − 1) − 9x2S(x) +
4x3

(1 − x)2
− 4x2

1 − x
,

which gives

(4.26) (1 − 6x + 9x2)S(x) =
(1 − 3x)(1 − x − 2x2)

(1 − x)2

and

S(x) =
1 − x − 2x2

(1 − x)2(1 − 3x)
.

(Here the denominator is not the reciprocal polynomial, because the in-
put function contributes a factor of (1 − x)2 and allows the cancellation
of 1 − 3x.) The solution is completed as above, with the partial fraction
decomposition

S(x) =
1

1 − 3x
+

1
(1 − x)2

− 1
1 − x

yielding the solution

sn = 3n + (n + 1) − 1 = 3n + n .

It is interesting to note that because 3 is not a double root of the de-
nominator of the rational function in this example, the solution sequence is
actually a solution to a first–order recurrence with ch(x) = x−3. Explicitly,
we see that 〈sn〉 is a solution to sn+1 = 3sn + 1 − 2n, since

sn+1 − 3sn = (3n+1 + n + 1) − 3(3n + n) = 1 − 2n .

4.2 An Overview of the Generating Function Technique 75

4.2.1 Rational representation

We’re now ready to determine the rational form that encodes an initial
value problem for

(L) sn+k = c1sn+k−1 + c2sn+k−2 + · · · + cksn + ψ(n)

where ψ(n) is the input sequence. Let S(x) =
∑

n≥0 snxn and F (x) =∑
n≥0 ψ(n)xn be the generating functions of 〈sn〉 and 〈ψ(n)〉 respectively.

Then

S(x) chR(x) = S(x)(1 − c1x − · · · − ckxk)

=
∑
n≥0

snxn − c1

∑
n≥0

snxn+1 − · · · − ck

∑
n≥0

snxn+k

=
∑
n≥0

snxn − c1

∑
n≥1

sn−1x
n − · · · − ck

∑
n≥k

sn−kxn

=
∑
n≥k

(
sn − c1sn−1 − · · · − cksn−k

)
xn +

k−1∑
n=0

snxn

− c1

k−1∑
n=1

sn−1x
n − · · · − ck−2

k−1∑
n=k−2

sn−k+2x
n − ck−1s0x

k−1 .

The first summand is∑
n≥0

(
sn+k − c1sk+n−1 − · · · − cksn

)
xn+k = xk

∑
n≥0

ψ(n)xn = xkF (x) ,

which depends only on F (x) and k. The remainder of the expression for
S(x)chR(x) contains the information about the initial conditions, and is
the polynomial

s0 + s1x + s2x
2 · · · + sk−1x

k−1

− c1s0x − c1s1x
2 · · · − c1sk−2x

k−1

− c2s0x
2 · · · − c2sk−3x

k−1

· · ·
− ck−1s0x

k−1.

Writing this polynomial as

d(x) = d0 + d1x
k−1 + · · · + dk−1x

k−1

gives di = si − c1si−1 − · · · − cis0 and in matrix-vector form

(4.27)

(dk−1, . . . , d0)T = M0S0 =

⎡⎢⎢⎢⎢⎢⎣
1 −c1 −c2 . . . −ck−1

0 1 −c1 . . . −ck−2

0 0 1 . . . −ck−3

...
...

...
...

0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
sk

sk−1

sk−2

...
s0

⎞⎟⎟⎟⎟⎟⎠ ,

76 4. Generating Functions

where S0 is the column vector of initial conditions and M0 is the above
k×k matrix, which depends only on the coefficients of the difference equa-
tion (L). This gives the following rational representation of the generating
function for (L).

The Rational Representation
If F (x) is the generating function of 〈ψ(n)〉 then the generating function
of the solution to (L) with initial values S0 is

(4.28) S(x) =
d(x) + xkF (x)

chR(x)
,

where d(x) is the polynomial with coefficients (dk−1, . . . , d0)T = M0S0.

From this we see that the rational representation is a rational function
(a ratio of polynomials) iff the generating function for the input function
can be written as a rational function.

Returning to the example in (4.24),

F (x) = 4
∑
n≥0

(n − 1)xn = 4x
∑
n≥0

nxn−1 − 4
∑
n≥0

xn

=
4x

(1 − x)2
− 4

1 − x
=

4(2x − 1)
(1 − x)2

and M0S0 = (−2, 1)T give

chR(x)S(x) = 1 − 2x +
4x2(2x − 1)

(1 − x)2
=

(1 − 3x)(1 − x − 2x2)
(1 − x)2

as in (4.26), since chR(x) = (1 − 3x)2.

4.3 A Review of Partial Fractions

If you’ve taken calculus, you’ve probably seen the technique of partial frac-
tions, which is used there to decompose a rational function into a sum
of rational functions that are simpler to integrate. For recurrences whose
generating function S(x) is a ratio of polynomials, the partial fraction de-
composition allows us to write S(x) as a sum of formal power series that
are in the form given in (4.25). The fact that a partial fraction expansion
exists is an algebraic result that we prove here.

Assume that p and q are polynomials with deg(p) < deg(q) and that the
leading coefficient of q(x) equals 1. Such a polynomial is called a monic
polynomial. From the Fundamental Theorem of Algebra (refer to Ap-
pendix B) we know that any polynomial with complex coefficients can be

4.3 A Review of Partial Fractions 77

factored into linear polynomials,

q(x) = (x − ρ1)m1 · · · (x − ρt)mt

for different elements ρ1, . . . , ρt of C. The first step in obtaining a useful
partial fraction decomposition will be to show that there exist polynomials
A1(x), . . . , At(x) such that

(4.29)
p(x)
q(x)

=
A1(x)

(x − ρ1)m1
+ · · · + At(x)

(x − ρt)mt

and each deg(Ai) < mi. We will show not only that such polynomials Ai(x)
exist and are unique, but our proof also gives a constructive method for
finding them. Once the initial decomposition in (4.29) is found, each Ai(x)
is expressed as a polynomial in x − ρi, say Ai(x) = α1(x − ρi)m−1 + · · · +
αm−1(x− ρi) + αm (for m = mi), and then the summand Ai(x)/(x− ρi)m

is expanded as

Ai(x)
(x − ρi)m

=
α1

x − ρi
+

α2

(x − ρi)2
+ . . . +

αm

(x − ρi)m
,

where α1, α2, . . . , αm are now elements of C. The partial fraction de-
composition we use is found by replacing each of the summands in (4.29)
by this finer decomposition. This is helpful, since each of the summands
now has the form given in (4.25), and the formula can be applied to obtain
the power series for the generating function of p(x)/q(x).

It remains to prove that (4.29) holds. First we note that when t = 1,
p(x)/q(x) = p(x)/(x − ρ1)m1 already has the form in (4.29). Our proof for
the case in which q has more than one root uses the Euclidean Algorithm
for polynomials, which is similar to the Euclidean Algorithm for integers,
which we discuss later, in Chapters 7 and 8. This algorithm relies on the
fact that every non-zero element of C has an inverse, and so the Division
Algorithm can be applied to any pair of non-zero polynomials a, b to give
unique polynomials Q1, R1 for which

a(x) = Q1(x)b(x) + R1(x) with deg(R1) < deg(b) .

Once the Division Algorithm has been applied once, the process can be
continued by dividing b(x) by R1(x), and continuing in this way a se-
quence of polynomials 〈Ri(x)〉 is obtained. Since deg(R1), deg(R2), . . . is
a strictly decreasing sequence of natural numbers, the process ends after
finitely many steps with Rn+1(x) = 0. In this way we have constructed two
finite sequences of polynomials, Q1, . . . , Qn+1 and R1, . . . , Rn, such that

a(x) = Q1(x)b(x) + R1(x) , b(x) = Q2(x)R1(x) + R2(x), . . . ,

Rn−2(x) = Qn(x)Rn−1(x) + Rn(x) , Rn−1(x) = Qn+1(x)Rn(x) + 0 .

78 4. Generating Functions

This sequence of equations is the Euclidean Algorithm for polynomials.
From the last equation, we note that Rn divides Rn−1. Using this informa-
tion in the previous equation, Rn also divides Rn−2, and continuing back
we find that Rn divides both a and b, and so Rn is a common divisor of
the original polynomials a and b. (In Exercise 4.7 you show that Rn is the
gcd of a and b, since it has the largest degree among all polynomials that
are common divisors.) Also, we can use the equations in reverse to obtain
polynomials B1 and B2 such that

B1(x)b(x) + B2(x)a(x) = Rn(x) .

Let us now return to the problem at hand, justification of the existence
of unique polynomials A1(x), . . . , At(x) with deg(Ai) < mi such that (4.29)
holds. As we have already mentioned, there is nothing to prove when t = 1.
For t > 1, the polynomials b(x) = (x−ρ2)m2 · · · (x−ρt)mt and a(x) = (x−
ρ1)m1 have no common factors, and so the last non-zero remainder when
the Euclidean Algorithm is applied to a and b is a constant polynomial,
Rn(x) = α ∈ C. Also, the equation

B1(x)b(x) + B2(x)a(x) = α

can be multiplied by α−1p(x) to obtain the two polynomials C1(x) =
α−1p(x)B1(x) and C(x) = α−1p(x)B2(x) such that

(4.30) C1(x)b(x) + C(x)a(x) = p(x) ,

giving
C1(x)

(x − ρ1)m1
+

C(x)
b(x)

=
p(x)
q(x)

.

This process can then be inductively continued using C(x)/b(x) to obtain
polynomials A2(x), . . . , At(x) such that (4.29) holds, provided deg(C) <
deg(b). For this, we note that by the Division Algorithm there exists a
polynomial t such that A1 = C1 − ta has small degree, deg(A1) < deg(a).
Substituting A1 and p1 = C + tb in (4.30), we have

A1(x)b(x) + p1(x)a(x) = p(x) .

Then

deg(A1b) < deg(a) + deg(b) = deg(q) and deg(p) < deg(q)

and

deg(p1) + deg(a) = deg(p1a) ≤ max{deg(p), deg(A1b)} < deg(q)

combine to give deg(p1) < deg(b), as required.

4.3 A Review of Partial Fractions 79

In our application, the denominator in the rational representation of the
generating function S(x) = p(x)/q(x) has a non-zero constant term, which
means that all of its roots ρ1, . . . , ρt are non-zero, and therefore each can
be written as ρi = 1/λi for some constant λi. The representation in (4.29)
becomes

(4.31)
p(x)
q(x)

=
A1(x)

(1 − λ1x)m1
+ · · · + At(x)

(1 − λtx)mt
,

where each λmi

i has been absorbed into the old Ai.
How do we actually find the polynomials A1(x), . . . , At(x)? Assume for

the moment that the denominator q has the property that it can be factored
into the form

q(x) = (1 − λ1x) · · · (1 − λkx),

where the non-zero constants λ1, . . . , λk ∈ C are different. We look at this
case first only because its analysis is somewhat simpler. What we want to
do is determine the constants A1, . . . , Ak such that

(4.32)
p(x)
q(x)

=
A1

1 − λ1x
+ · · · + Ak

1 − λkx
.

For this, set λ = λ1 and multiply both sides of (4.32) by the polynomial
1 − λx to obtain

p(x)(1 − λx)
q(x)

= A1 +
A2(1 − λx)

1 − λ2x
+ · · · + Ak(1 − λx)

1 − λkx
,

where

lim
x→1/λ

Ai(1 − λx)
1 − λix

= 0

for all i = 2, . . . , k. This gives

lim
x→1/λ

p(x)(1 − λx)
q(x)

= A1 ,

and A1 has been found.
Our method for computing the polynomials A1(x), . . . , At(x) when q has

repeated roots is only a slight modification of the one we’ve just given for
simple roots. Setting λ = λ1, A(x) = A1(x), m = m1 and multiplying
(4.31) by (1 − λx)m, we have

(4.33)
p(x)(1 − λx)m

q(x)
= A(x) + (−λ)m(x − a)mT (x),

where

a =
1
λ

and T (x) =
A2(x)

(1 − λ2x)m2
+ · · · + At(x)

(1 − λtx)mt
.

80 4. Generating Functions

Since λ /∈ {λ2, . . . , λt}, the function T (x) is defined for all complex numbers
x in the disk

|x − a| < R with radius R = min
{∣∣∣ 1

λi
− a

∣∣∣ : i = 2, . . . , t
}

> 0 .

The function f(x) =
p(x)(1 − λx)m

q(x)
therefore has a Taylor series (refer to

Appendix B)

f(x) =
∑
i≥0

bi(x − a)i, for bi =
Di(f)(a)

i!
,

which converges on |x − a| < R. (Here D is the differentiation operator
and Di(f)(a) is the evaluation of the ith derivative of f at x = a.) Because
T (x) also has a Taylor series

T (x) =
∑
i≥0

ti(x − a)i on |x − a| < R ,

from (4.33) we have∑
i≥0

bi(x − a)i = f(x) = A(x) +
∑
i≥0

(−λ)mti(x − a)i+m.

The uniqueness of the Taylor series implies that

A(x) =
m−1∑
i=0

bi(x − a)i =
m−1∑
i=0

Di(f)(a)
i!

(x − a)i ,

the Taylor polynomial of degree m − 1. This result is summarized in the
following.

The Partial Fraction Decomposition
If q(x) =

∏t
i=1(1 − λix)mi (for distinct non-zero λ1, . . . , λt), then the

partial fraction decomposition of any rational function p(x)/q(x) with
deg(p) < q(x) has the form

p(x)
q(x)

=
m1∑
j=1

α1j

(1 − λ1x)j
+ · · · +

mt∑
j=1

αtj

(q − λtx)j
,

where for each i = 1, . . . , t,
∑mi

j=1 αij(1 − λix)mi−j is the Taylor polyno-

mial about ai = 1/λi of degree mi − 1 for fi(x) =
p(x)(1 − λix)mi

q(x)
.

4.3 A Review of Partial Fractions 81

There are other ways to determine the constants αij . For instance, us-
ing the notation above we again suppose q has the factorization q(x) =
a(x)b(x), where

a(x) = (1 − λ1x)m, b(x) = (1 − λ2x)m2 · · · (1 − λtx)mt ,

and λ1, . . . , λt are distinct and non-zero. Setting q1(x) = q(x)/(1 − λ1x),
from the form of the partial fraction decomposition we know that there
exists α1m ∈ C and a polynomial p1 such that

p(x)
q(x)

=
α1m

(1 − λ1x)m
+

p1(x)
q1(x)

.

Multiplying this by (1 − λ1x)m, we obtain

α1m =
p(x)
b(x)

− p1(x)(1 − λ1x)
b(x)

,

and since b(1/λ1) is non-zero, then

α1m = lim
x→1/λ1

(
p(x)
b(x)

− p1(x)(1 − λ1x)
b(x)

)
=

p(1/λ1)
b(1/λ1)

.

This determines α1m. Also, p(1/λ1) − α1mb(1/λ1) = 0, implying that
x = 1/λ1 is a root of P (x) = p(x) − α1mb(x), which means that p1(x) =
P (x)/(1 − λ1x) is a polynomial for which deg(p1) < max(deg(p), deg(b)),
and so deg(p1) < deg(q1). So, the process can be continued with p1(x)/q1(x),
and all the constants αij can be found in this way.

We end this section with two examples. First we find the partial fraction
decomposition of 1/(1 − x)(1 − 2x)2 by calculating the required Taylor
polynomials for ρ = 1, 2. For ρ = 1, we want the Taylor polynomial of
degree 0 for f1(x) = 1/(1 − 2x)2, which is f1(1) = 1, while for ρ = 2 the
Taylor polynomial of degree 1 is required for f2(x) = 1/(1 − x), which is

f2(1/2) + f ′
2(1/2)(x − 1/2) = 2 + 4(x − 1/2) = 2 − 2(1 − 2x) .

This gives the partial fraction decomposition

p(x)
q(x)

=
1

1 − x
+

2
(1 − 2x)2

− 2
1 − 2x

.

Now let’s use the second method for determining α11, α22, α21 such that

p(x)
q(x)

=
α11

1 − x
+

α22

(1 − 2x)2
+

α21

1 − 2x
.

From p(x) = 1 and b(x) = (1 − 2x)2, α11 = p(1)/b(1) = 1. Also,

p1(x) =
1 − 1(1 − 2x)2

1 − x
= 4x

82 4. Generating Functions

which means that we want to find α22, α21 such that

4x

(1 − 2x)2
=

p(x)
q(x)

=
α22

(1 − 2x)2
+

α21

1 − 2x
,

where now p(x) = 4x and q(x) = (1 − 2x)2. For this, the new b(x) equals
1, and so α22 = p(1/2)/b(1/2) = 2 and

p1(x) =
4x − 2
1 − 2x

= −2 = α21 ,

as found above.
For another example, consider p(x)/q(x) for p(x) = −4 − 13x − 2x2 −

7x3 +8x4 and q(x) = 1+x−5x2−x3 +8x4−4x5. To find the factorization
of q(x), we note that q(1) = 0 and divide q(x) by 1 − x to get

q(x) = (1 − x)(4x4 − 4x3 − 3x2 + 2x + 1) .

The quotient is also divisible by 1 − x, and in fact,

q(x) = (1 − x)3(4x2 + 4x + 1) = (1 − x)3(1 + 2x)2 .

We know that
p(x)
q(x)

=
A1(x)

(1 − x)3
+

A2(x)
(1 + 2x)2

,

where A1(x) is the Taylor polynomial of degree 2 about x = 1 for

f1(x) =
p(x)(1 − x)3

q(x)
=

p(x)
(1 + 2x)2

,

and A2(x) is the Taylor polynomial of degree 1 for f2(x) =
p(x)(1 + 2x)2

q(x)
about x = − 1

2 . Calculation gives

A1(x) = −2 + 2(x − 1) + (x − 1)2 = −2 − 2(1 − x) + (x − 1)2 ,

A2(x) = 1 − 4(x +
1
2
) = 1 − 2(1 + 2x) ,

and the decomposition is

(4.34)
p(x)
q(x)

= − 2
(1 − x)3

− 2
(1 − x)2

+
1

1 − x
+

1
(1 + 2x)2

− 2
(1 + 2x)

.

4.4 Examples of the Generating Function
Technique

The generating function technique we’ve just described allows us to solve
the linear difference equation L(s) = ψ when the generating function F (x)

4.4 Examples of the Generating Function Technique 83

for the input function is a rational function. When ψ is a polynomial, from
the method in the last sections we can write F (x) as a sum of rational
functions whose power series have the form given in (4.25). As an example,
let us apply the generating function technique to solve

sn = −sn−1 + 5sn−2 + sn−3 − 8sn−4 + 4sn−5 ,

S0 = (9,−43,−13,−9,−4)T ,

which has characteristic polynomial ch(x) = x5 + x4 − 5x3 − x2 + 8x − 4,
giving ⎡⎢⎢⎢⎢⎣

1 1 −5 −1 8
0 1 1 −5 −1
0 0 1 1 −5
0 0 0 1 1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

9
−43
−13
−9
−4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
8
−7
−2
−13
−4

⎞⎟⎟⎟⎟⎠ .

By (4.28) the generating function of 〈sn〉 is

S(x) =
−4 − 13x − 2x2 − 7x3 + 8x4

1 + x − 5x2 − x3 + 8x4 − 4x5
,

whose partial fraction decomposition is given in (4.34), and from (4.25),

sn =

(
−2

(
n + 2

2

)
− 2

(
n + 1

1

)
+ 1

)
+

((
n + 1

1

)
− 2

)
(−2)n

= −(n2 + 5n + 3) + (n − 1)(−2)n.

The rest of this section considers two nonlinear recurrences that can be
solved using generating functions.

4.4.1 The Catalan numbers

For integer n ≥ 0 consider a string of n + 1 elements from a set with a
binary operation. If the operation is not associative, then the result of

a0a1 · · · an

is ambiguous until parentheses are inserted, and we can ask how many
different arrangements of parentheses can be inserted in this string. This
number is called the nth Catalan number Cn. For instance, when n = 2
the possibilities are

a0(a1a2) and (a0a1)a2 ,

giving C2 = 2, and C3 = 5 since the choices for n = 3 are

(a0a1)(a2a3) ; a0((a1a2)a3) ; (a0(a1a2))a3 ; a0(a1(a2a3)) ; ((a0a1)a2)a3 .

84 4. Generating Functions

In [26], Catalan considers this sequence, and he points out that Lamé [91]
already proved that the sequence satisfies the nonlinear recurrence

for all n ≥ 0 , Cn+1 = C0Cn + C1Cn−1 + · · · + CnC0 ,

with initial values C0 = 1 , C1 = 1. Some authors (among them [18]) claim
that this sequence was originally investigated by Euler [60].

To see that the sequence of Catalan numbers does indeed satisfy the
recurrence, consider any arrangement of parentheses in an (n+2)-string as
defining a sequence of multiplications. The final multiplication is a product
of a (k + 1)-string and an (n + 1− k)-string (for some k, 0 ≤ k ≤ n), where
the parentheses in the two factors can be arranged in Ck and Cn−k ways,
respectively. This means that for each k ≥ 0 there is a total of CkCn−k

different arrangements of parentheses in which the first factor of the final
multiplication is a (k + 1)-string. Summing over allowable k = 0, 1, . . . , n
we obtain Cn+1 = C0Cn + C1Cn−1 + · · · + CnC0, as required.

Let’s use generating functions to solve this recurrence. Applying the defi-
nition of multiplication of power series as in (4.13), the generating function
C(x) for the Catalan numbers satisfies

(C(x))2 =
∑
n≥0

(C0Cn + C1Cn−1 + · · · + CnC0)xn =
∑
n≥0

Cn+1x
n ,

which gives

1 + xC(x)2 = 1 + x
∑
n≥0

Cn+1x
n = C0 +

∑
n≥1

Cnxn = C(x) .

Setting z = C(x), then z is a power series solution to the quadratic equation
xz2 − z + 1 = 0, and Exercise 3.19 implies that C(x) must be one of

C(x) =
1 ±

√
1 − 4x

2x
.

By the Generalized Binomial Theorem in (3.18) for r = 1/2, the power
series of

√
1 − 4x is

∑
n≥0

(
1/2
n

)
(−4x)n, and we obtain

xC(x) =
1 ±

∑
n≥0

(
1/2
n

)
(−4x)n

2
.

Comparing the first coefficients of these power series, we see that the neg-
ative sign must be chosen and

C(x) = −1
2

∑
n≥1

(
1/2
n

)
(−4)nxn−1

= −1
2

∑
k≥0

(−1)k+1

(
1/2

k + 1

)
4k+1xk

=
∑
k≥0

(−1)k

(
1/2

k + 1

)
22k+1xk .

4.4 Examples of the Generating Function Technique 85

This gives

Ck = (−1)k

(
1/2

k + 1

)
22k+1 =

1
k + 1

(
2k

k

)
by Exercise 4.24.

4.4.2 Stirling numbers of the second kind

The second combinatorial problem we consider is associated with parti-
tioning a finite set, and our counting argument uses partial fractions. A
partition of the n-set S = {1, 2, . . . , n} is a set of disjoint subsets (often
called equivalence classes) whose union is S. For each pair of positive
integers k, n with k ≤ n, the Stirling number of the second kind is

denoted by

{
n
k

}
and is defined to be the number of partitions of an n-set in

which there are k classes. For instance, considering the partitions of a 4-set
into k = 2 equivalence classes, there are three in which both equivalence
classes have two elements (consider the possibilities for the class containing

1) and four that have a 1-set and a 3-set. This gives

{
4
2

}
= 7.

First we obtain a recurrence. For this we note that the number of par-
titions with k classes in which {n} is one of the equivalence classes is{

n − 1
k − 1

}
. In the other partitions, n is in an equivalence class with at least

one other element, and when n is removed what remains is a partition of an

(n−1)-set in which there are k classes. There are

{
n − 1

k

}
such partitions,

and n might have originally been in any of the k classes. Therefore, for all
1 ≤ k ≤ n,

(4.35)

{
n
k

}
=

{
n − 1
k − 1

}
+ k

{
n − 1

k

}
.

We extend this to all natural numbers n, k by defining

{
n
k

}
to be zero

when k > n or k = 0 (except for

{
0
0

}
= 1). For each fixed k ≥ 1 define the

generating function

Sk(x) =
∑
n≥0

{
n
k

}
xn =

∑
n≥k

{
n
k

}
xn ,

86 4. Generating Functions

which from (4.35) becomes

Sk(x) =
∑
n≥k

{
n − 1
k − 1

}
xn + k

∑
n≥k

{
n − 1

k

}
xn = xSk−1(x) + kxSk(x) .

This gives Sk(x) =
x

1 − kx
Sk−1(x), and inductively

Sk(x) =
x2Sk−2(x)

(1 − kx)(1 − (k − 1)x)
= · · · =

xk

(1 − kx) · · · (1 − x)
,

since S0(x) = 1. From the theory of partial fractions we know that there
exist αj ∈ C such that

1
(1 − x)(1 − 2x) · · · (1 − kx)

=
k∑

j=1

αj

1 − jx
,

which means that

Sk(x) = xk
k∑

j=1

αj
1

1 − jx
= xk

k∑
j=1

αj

∑
n≥0

(jx)n

=
∑
n≥0

k∑
j=1

αjj
nxn+k

=
∑
n≥k

(k∑
j=1

αjj
n−k

)
xn .

Combining this with Sk(x) =
∑

n≥k

{
n
k

}
xn gives

{
n
k

}
=

k∑
j=1

αjj
n−k .

For each j = 1, . . . , k, αj can be calculated (refer to Exercise 4.25) to be

αj =
(−1)k−jj k−1

(j − 1)!(k − j)!
(for all n, k > 0) ,

and this gives the formula{
n
k

}
=

k∑
j=1

(−1)k−jj n−1

(j − 1)!(k − j)!
.

4.5 Reversion of Generating Functions 87

4.5 Reversion of Generating Functions

In this section we explore another method for recovering the elements of
a sequence from its generating function. (Be sure to review the material
in Appendix B.) It’s called the Fourier Transform Method and is a
preview of the Fast Fourier Transform which we describe in detail in
Chapter 9 (refer to Section 9.5). The basic idea is to replace the formal
differentiation process by an appropriately selected weighted sum of some
values of the generating function. Remember that in order to evaluate the
generating function at any complex number x = α, the power series must
be more than simply a formal series—it must converge at x = α. The disk
of convergence must contain a disk around each complex number at which
the series is to be evaluated.

In Appendix B we discussed primitive nth roots of unity, complex
numbers ω such that ωn = 1 and ωj = 1 for all 1 ≤ j < n. For example,
ω2 = −1 is the only primitive second root of unity. For general n ≥ 1,

ωn = e
2πi
n = cos

(2π

n

)
+ i sin

(2π

n

)
is always a primitive nth root of unity and is often called the principal
nth root of unity. When ω is any nth root of unity, then

0 = ωn − 1 = (ω − 1)(ωn−1 + · · · + ω + 1)

implies

(4.36) ωn−1 + · · · + ω + 1 = 0, provided ω = 1 .

The next result shows how roots of unity can be used to recover the elements
of finite sequences.

Theorem 4.5.1. Let 〈s0, . . . , sp−1〉 be a finite sequence of length p ≥ 2
with generating polynomial S(x) = s0 + s1x + · · · + sp−1x

p−1. If ω is a
primitive pth root of unity, then sj can be computed by the formula

sj =
1
p

p−1∑
n=0

ω−jnS(ωn) , for any j = 1, . . . , p − 1.

Proof. For any fixed j = 1, 2, . . . , p − 1 we have

ω−jS(ω) =s0ω
−j + s1ω

1−j + · · · + sp−1ω
p−1−j ,

ω−2jS(ω2) =s0ω
−2j + s1ω

2−2j + · · · + sp−1ω
2(p−1)−2j ,

...

ω−(p−1)jS(ωp−1) =s0ω
−(p−1)j + s1ω

p−1−(p−1)j + · · · + sp−1ω
(p−1)2−(p−1)2j .

88 4. Generating Functions

Adding these p − 1 equations to S(1) = s0 + s1 + · · · + sp−1, we obtain

p−1∑
n=0

ω−jnS(ωn) = s0

p−1∑
n=0

ω(0−j)n +s1

p−1∑
n=0

ω(1−j)n + · · ·+sp−1

p−1∑
n=0

ω(p−1−j)n ,

where the coefficient of si in this equation is Ci =
∑p−1

n=0 ω(i−j)n. When
0 ≤ i, j < p− 1 and i = j, the primitivity of ω implies ωi−j = 1, and (4.36)
gives Ci = 0. Therefore,

Ci =

{
0 if i = j,

p if i = j,

and
p−1∑
n=0

ω−jnS(ωn) = psj ,

proving the theorem.

This result can be easily extended to periodic sequences, infinite se-
quences formed by juxtaposing copies of a fixed finite sequence,

s0, s1, . . . , sp−1, s0, s1, . . . , sp−1,

(The number p is called the period of 〈sn〉 when it’s the least integer with
this property.) Since the first p terms of such sequences are the terms of
the finite sequence 〈s0, s1, . . . , sp−1〉 , using Theorem 4.5.1 its terms can be
calculated as

sj =
1
p

p−1∑
n=0

ω−jnS(ωn) .

Since the sequence 〈sn〉 has been assumed to be the infinite juxtaposition
of these p terms, we’ve proved the following result.

Corollary 4.5.2. Let 〈sn〉 be a periodic sequence with period p and let ω
be a primitive pth root of unity. If S(x) is the generating function for the
period s0, s1, . . . , sp−1, then the terms are

sj+kp =
1
p

p−1∑
n=0

ω−jnS(ωn) for all k , j .

It should be noted that the technique used in these results can be extended
to more general sequences, provided we can evaluate the generating func-
tion of the sequence in some neighborhood of x = 0. For this, we cannot
look at the series expansion as only a formal power series, but rather require
it to satisfy the analytic property of convergence.

4.5 Reversion of Generating Functions 89

Let us first illustrate the technique by using it to recover s0 and s1.
Suppose S(x) converges on |x| < R. Then each of the series

S(x) = s0 + s1x + · · · + snxn + · · ·

and
S(−x) = s0 − s1x + · · · + (−1)nsnxn + · · ·

converges for every |x| < R, as does the sum

(4.37) S(x) + S(−x) = 2(s0 + s2x
2 + · · · + s2nx2n + · · ·) = 2f2(x) ,

where here f2(x) is the function f2(x) =
∑

n≥0 s2nx2n discussed in Exer-
cise 4.26(b). Therefore, (4.37) becomes

lim
x→0

S(x) + S(−x)
2

= s0 ,

and we’ve recovered s0! Also, considering the difference S(x) − S(−x) and
Exercise 4.26, we have

S(x) − S(−x) = 2x(s1 + s3x
2 + · · · + s2n+1x

2n + · · ·) = 2xf2(x) ;

(4.38) lim
x→0

S(x) − S(−x)
2x

= lim
x→0

f2(x) = s1 ,

the next element of the sequence.
To generalize this to a general reversion formula, notice that (4.38) can

be rewritten as

lim
x→0

S(x) + ωS(ωx)
2x

= s1

when ω = −1, the principal 2nd root of unity. Although this might seem
like a complicated way to write (4.38), we will see that this type of identity
works in general.

As a warm-up for the general case, let ω be the principal 3rd root of
unity. Since

|x| = |ωx| = |ω2x| for all x ,

then for x within |x| < R the generating function S(x) converges at all
three of x and ωx and ω2x. Therefore, ω3 = 1 implies

S(ωx) = s0 + s1ωx + s2ω
2x2 + s3x

3 + s4ωx4 + s5ω
2x5 + · · · ,

S(ω2x) = s0 + s1ω
2x + s2ωx2 + s3x

3 + s4ω
2x4 + s5ωx5 + · · · ,

90 4. Generating Functions

and

S(x) + ωS(ωx) + ω2S(ω2x)

= s0 + s1x + s2x
2 + s3x

3 + s4x
4 + s5ωx5 + · · ·

+ s0ω + s1ω
2x + s2x

2 + s3ωx3 + s4ω
2x4 + s5x

5 + · · ·
+ s0ω

2 + s1ωx + s2x
2 + s3ω

2x3 + s4ωx4 + s5x
5 + · · ·

= 0s0 + 0xs1 + 3s2x
2 + 0s3 + 0s4x

4 + 3s5x
5 + · · · ,

the last from (4.36). This can be reworded as

(4.39) S(x) + ωS(ωx) + ω2S(ω2x) = 3x2f3(x) ,

where again from Exercise 4.26 we obtain

lim
x→0

S(x) + ωS(ωx) + ω2S(ω2x)
3x2

= s2 .

In Exercise 4.27 you show that the pattern in (4.39) generalizes to

(4.40) S(x) + ωS(ωx) + · · · + ωm−1S(ωm−1x) = mxm−1fm(x) ,

and from Exercise 4.26 we therefore obtain

lim
x→0

S(x) + ωS(ωx) + · · · + ωm−1S(ωm−1x)
mxm−1

= lim
x→0

fm(x) = sm−1 .

We have proved the following Reversion Formula.

The Reversion Formula

If the generating function S(x) for the sequence 〈sn〉 converges in some
neighborhood of x = 0, then for any integer m ≥ 2,

(4.41) sm−1 = lim
x→0

1
m xm−1

m−1∑
n=0

ωn
mS(ωn

mx),

where ωm is the principal mth root of unity.

Note that we could have allowed ωm to be any primitive mth root of unity
in this Reversion Formula.

4.5 Reversion of Generating Functions 91

As an example, let us use the Reversion Formula to find the first two
terms of the Fibonacci sequence. In Exercise 4.26 the radius of convergence
for the Fibonacci generating function F (x) = x/(1−x−x2) is shown to be
R = (

√
5 − 1)/2. We can therefore use m = 1, 2 in the Reversion Formula

to obtain the first two terms of the sequence,

f0 = lim
x→0

F (x) + F (−x)
2

= lim
x→0

x2

(1 − x − x2)(1 + x − x2)
= 0,

and

f1 = lim
x→0

F (x) − F (−x)
2x

= lim
x→0

1 − x2

(1 − x − x2)(1 + x − x2)
= 1.

Of course, for more complicated generating functions the limits in the Re-
version Formula might be difficult to compute. In such situations, approx-
imations to the limit give an estimate for the elements in the sequence.

4.5.1 Using the Fourier Transform

For an approximation, we would like to truncate the power series and make
it a polynomial. Of course, we don’t know the power series or its approxi-
mating polynomial. But we do know a formula for the generating function.
We can use this formula to calculate approximate values for the approxi-
mating polynomial. The really clever trick here is that the inverse Fourier
transform can be used to go from a set of values to the coefficients of a
polynomial. With the FFT algorithm this calculation can be done quickly,
i.e. the n coefficients of a polynomial can be computed from the n values
of the polynomial using Θ(n logn) arithmetic operations. (See Section 9.5
for more details on the FFT.)

Consider the polynomial p(x) = 1 + x. Evaluating at the 4th roots of
unity 1, i,−1,−i gives

p(1) = 2 ,

p(i) = 1 + i ,

p(−1) = 0 ,

p(−i) = 1 − i .

92 4. Generating Functions

If we express p(x) as p(x) = c0 + c1x + c2x
2 + c3x

3, then the coefficients
can be computed via the inverse Fourier transform as

c0 =
1
4

[p(1) + p(i) + p(−1) + p(−i)]

= 1 ,

c1 =
1
4

[p(1) + p(i) · (−i) + p(−1) · (−i)2 + p(−i) · (−i)3]

=
1
4

[2 + 1 − i + 0 + 1 + i]

= 1 ,

c2 =
1
4

[p(1) + p(i) · (−1) + p(−1) · (−1)2 + p(−i) · (−1)3]

=
1
4

[2 − 1 − i + 0 − 1 + i]

= 0 ,

c3 =
1
4

[p(1) + p(i) · (i) + p(−1) · (i)2 + p(−i) · (i)3]

=
1
4

[2 − 1 + i + 0 − 1 − i]

= 0 .

This evaluation at the 4th roots of unity is the 4-point Fourier transform.
Notice that the evaluation points are i0, i1, i2, i3, the powers of i taken
in this order. Back-calculating p(x)’s coefficients from these values is the
inverse Fourier transform. This inverse calculation can also be viewed as
treating the values of p(x) as coefficients of another polynomial and eval-
uating this other polynomial at the powers of −i, and then dividing these
values by 4. These results will be the coefficients of p(x).

If we think of the roots of unity as being arranged around the unit circle
in the complex plane, the powers of i are found by going counterclockwise
around this circle, and the powers of −i are found by going clockwise around
the circle. So by calculating in the counterclockwise direction, we compute
the Fourier transform, and by calculating in the clockwise direction we
compute the inverse Fourier transform. The factor 1/n (in this example
1/4) is needed to normalize the result.

The inverse Fourier transform (except for the normalization) can be cal-
culated by an algorithm for the Fourier transform by making use of complex
conjugation. Section 9.5 explains this in more detail.

What does all this have to do with reversion of generating functions?
Generally, generating functions are not polynomials, but near x = 0, one
hopes that a generating function may be approximated by a Taylor poly-
nomial. For example, the Fibonacci generating function

F (x) = 0 + x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + · · ·

4.5 Reversion of Generating Functions 93

may be approximated close to x = 0 by the polynomial 0 + x. On the
other hand, evaluating F (x) at the roots of unity looks “iffy” because, for
example, the series for F (1) does not converge. A better-behaved series can
be obtained by scaling. For example, replacing x by .1 z in F (x) gives

G(z) = F (.1z) = 0 + .1z + .01z2 + .002z3 + .0003z4 +

Since the series for G(z) converges for z = 1 and G(z) may be “reasonably
approximated” by the polynomial

0 + .1z + .01z2 + .002z3

when |z| = 1, we expect that if we had the values of G(z) for z = 1, i,−1,−i,
we would be able to use the inverse Fourier transform to calculate a poly-
nomial of degree at most 3 whose coefficients should be reasonably close to
the coefficients of

G4(z) = 0 + .1z + .01z2 + .002z3.

We can use

G(z) =
.1z

1 − .1z − .01z2

to find

G(1) ≈ .11236 ,

G(i) ≈ −.0097 + .098i ,

G(−1) ≈ −.0917 ,

G(−i) ≈ −.0097− .098i .

Then using the inverse Fourier transform we find that

G4(z) ≈ .00046 + .1z + .01z2 + .002z3 ,

and rescaling to x we find that

F4(z) ≈ .00046 + x + x2 + 2x3 ,

which is a reasonable approximation to the first four terms in the generating
function for the Fibonacci numbers.

The following box gives the general form of this Fourier Transform re-
version technique.

94 4. Generating Functions

The Fourier Reversion Method

Let S(x) be the generating function for the sequence 〈sn〉 .
Find a scaling factor α such that G(z) = S(αx) and G(z) is reasonably
approximated by a polynomial Gm(z) with m coefficients.
Let ω be the principal mth root of unity.
Evaluate G(z) at 1, ω, ω2, . . . , ωm−1.
Use the inverse Fourier transform to calculate the approximate coeffi-
cients of Gm(z).
Re-scale to obtain approximations to the first m coefficients of the series
for S(x) and hence approximations for the first m terms of 〈sn〉 .

4.6 Exercises

Ex 4.1. Using the alphabet {x, y}, find an exact formula for the number
of n-strings with an even number of x’s.

Ex 4.2. For this exercise, use the notation established in Section 4.1.
(a) Prove s

(n)
01 = s

(n)
10 for all n ≥ 0. Denote the common value by tn.

(b) Let sn = s
(n)
00 and tn = s

(n)
01 = s

(n)
10 . Use this and equations (4.3) and

(4.9) through (4.12) to obtain

tn+1 = 2tn + 3tn−1 ; t0 = 0, t1 = 1 ;
sn+2 = 3sn+1 + sn − 3sn−1 ; s0 = 1, s1 = 1, s2 = 3 ;

sn = sn−1 + 2tn−1 ; s0 = 1, s1 = 1 .

(c) Find exact formulas for sn and tn.

Ex 4.3. Using the alphabet {x, y, z}, let vn be the number of n-strings in
which the number of y’s is odd and the number of z’s is odd. Find an exact
formula for vn.

Ex 4.4. Use the technique of generating functions to find a formula for
the nth term of

s0 = 0, s1 = 1, sn = 5sn−1 − 6sn−2 .

Ex 4.5. Let f(x) = akxk + · · · + a1x + a0 be a nonconstant polynomial
with complex coefficients and a0 = 0. (For instance, the characteristic
polynomial of (L) has these properties.) Let fR(x) = ak + ak−1x + · · · +
a1x

k−1 +a0x
k, the reciprocal polynomial of f(x). Show that λ is a non-zero

root of f(x) = 0 iff 1/λ is a root of fR(x) = 0.

Ex 4.6. Let q(x) = (1 − λx)(1 − λx) for nonreal λ ∈ C.

4.6 Exercises 95

(a) Show that for any p(x) ∈ R[x] with deg(p) < 2n, there exists a unique
β(x) ∈ C[x] with deg(β) < n such that

(4.42)
p(x)

(q(x))n
=

β(x)
(1 − λx)n

+
β(x)

(1 − λx)n
,

where β(x) denotes the polynomial obtained from β(x) by conjugat-
ing all coefficients.

(b) For any constant β ∈ C,

(4.43)
β

1 − λx
+

β

1 − λx
= 2

∑
j≥0

�(βλj)xj ,

where �(βλj) denotes the real part of the complex number βλj .

Ex 4.7. Let a(x), b(x) ∈ C[x] be two non-zero polynomials. Show that
any common divisor of a(x) and b(x) divides the last non-zero remainder
Rn(x) in the Euclidean Algorithm applied to a(x) and b(x). This proves
that α−1Rn(x) is the gcd of a(x) and b(x), where α is the leading coefficient
of Rn(x).

Ex 4.8. As established in Chapter 3, any operator of the form L = I −
c1σ − · · · − ckσk is an invertible operator on S+ and is also invertible as a
formal power series. We claimed that the coefficients of L−1 = chR(σ)−1 =∑

n≥0 anσn satisfy

an = c1an−1 + c2an−2 + · · · + ckan−k for all n ≥ k .

Use results from generating functions to show this.

Ex 4.9. If L(σ) is the shift operator associated with the initial value prob-
lem

s0 = 0 , s1 = 1 , sn = 4sn−1 − 4sn−2 ,

show that its inverse is the operator

L−1 =
∑
n≥0

(n + 1)2nσn .

Ex 4.10. Verify that the partial fraction expansion of the generating func-
tion for

s0 = 0 , s1 = 1 , sn = 4sn−1 − 4sn + 3n(n − 1)

is
19
2

1
(1 − 2x)2

+
71
2

1
1 − 2x

+
9

(1 − 3x)2
− 54

1 − 3x
.

Ex 4.11. (a) Find the generating function of sn = n2.

96 4. Generating Functions

(b) Show that the generating function of the sequence sn = 12 + 22 +
· · · + n2 is

2
(1 − x)4

− 3x

(1 − x)3
− 2

(1 − x)2
.

Ex 4.12. (a) If S(x) is the generating function for the sequence 〈sn〉 ,
show that S(x)/(1− x) is the generating function for the sequence of
partial sums

∑n
j=0 sj .

(b) Use part (a) to prove the Fibonacci identity

F0 + F1 + · · · + Fn = Fn+2 − 1 .

Ex 4.13 (L’Hôpital’s Rule). Let p(x), q(x) ∈ C[x] be polynomials.
(a) If α ∈ C is a root of q(x), show q(x) = (x−α)q1(x) for some polyno-

mial q1(x) and that q′(α) = q1(α).
(b) Suppose α is a root of p(x) and a simple root of q(x). Show that

lim
x→α

p(x)
q(x)

= lim
x→α

p′(x)
q′(x)

.

Ex 4.14. Use the generating function method to find an exact formula for
the nth term of

s0 = 5 , s1 = 13 , sn = −4sn−1 + 5sn−2 .

Ex 4.15. Use the generating function method to find a formula for the nth

term
s0 = −1 , s1 = 2 , s2 = 14, sn = sn−1 − 4sn−2 + 4sn−3 .

Ex 4.16. Expand
4x2 − 2x − 1

(1 + x)(1 − x − 3x2)
into a power series.

Ex 4.17. Find the sequence with generating function
1

1 − 2x
+

1
(1 − 3x)3

.

Ex 4.18. Use the generating function technique to show that

sn =

⎧⎪⎨⎪⎩
2n if n is even ,

2n + 2 if n ≡ 1 mod 4 ,

2n − 2 if n ≡ 3 mod 4

is the solution to

(s0, s1, s2) = (1, 4, 4), sn+3 = 2sn+2 − sn+1 + 2sn.

Ex 4.19. (a) Use the technique of generating functions to solve

s0 = 1 , s1 = 0 , sn = 4sn−1 − 4sn−2 + 3n(n − 1) .

4.6 Exercises 97

(b) Find all solutions to

sn = 4sn−1 − 4sn−2 + 3n(n − 1) .

Ex 4.20. Consider the following coupled pair of initial value problems:

s0 = 1 , s1 = 0 , t0 = 0 , t1 = 1 , sn = 2tn−1 + sn−2 , tn = −sn−1 + tn−2 .

Let S(z) and T (z) denote the generating functions of 〈sn〉 and 〈tn〉 . Find
a system of two equations that relate S(z) and T (z), and use this to solve
for the generating functions.

Ex 4.21. We consider a nonhomogeneous recurrence with characteristic
polynomial ch(x) and forcing function ψ(n) = λnp(n) for some polynomial
p(x) of degree m ≥ 1.

(a) Show that there exists a polynomial Q(x) with deg(Q) ≤ m such
that the generating function of every initial value problem for this
recurrence has the form

(4.44) S(x) =
d(x)(1 − λx)m+1 + xkQ(x)

chR(x)(1 − λx)m+1

for some polynomial d(x) with deg(d) < deg(ch).
(b) Show that for any polynomial d(x) with deg(d) < deg(ch), there

exists an initial value problem whose generating function has the
form given in (4.44).

Ex 4.22. Let sn = αλn
0 +a1(n)λn

1 + · · ·+ak−1(n)λn
k−1 be a solution to the

kth order recurrence sn = c1sn−1 + c2sn−2 + · · ·+ cksn−k. If λ0 is a simple
eigenvalue of the recurrence, show that

α = lim
x→λ0

(d0x
k−1 + d1x

k−2 + · · · + dk−1)(x − λ0)
ch(x)

,

where di = si − c1si−1 − · · · − ci−1s0.

Ex 4.23 (Generalized Fibonacci sequence). For k ≥ 2 define the
sequence 〈fn〉 by

f0 = f1 = · · · = fk−2 = 0 , fk−1 = 1 and fn = fn−1+fn−2+· · ·+fn−k .

(a) Show that for all x = 1,

ch(x) =
xk(x − 2) + 1

x − 1
.

(b) Use the last exercise and part (a) to show that if λ0 is the largest
eigenvalue of the recurrence (later we’ll prove that it is the only posi-
tive eigenvalue), then fn = αλn

0 + dn, where dn has no λn
0 component

and
α =

λ0 − 1
λ0[(k + 1)λ0 − 2k]

.

98 4. Generating Functions

Ex 4.24. Show that for all positive integers k,(
1/2

k + 1

)
22k+1 =

(−1)k

k + 1

(
2k

k

)
,

where
(
1/2
n

)
is the generalized binomial coefficient given by(

1/2
n

)
=

1/2(−1/2) · · · (3/2 − n)
n!

.

Ex 4.25. For any k ≥ 1, show that the partial fraction decomposition of

1
(1 − x)(1 − 2x) · · · (1 − kx)

=
α1

1 − x
+ · · · + αk

1 − kx

has

αj =
(−1)k−jjk−1

(j − 1)!(k − j)!
.

Ex 4.26. (Refer to the information on convergence given in Appendix B.)
Let γ(x) =

∑
n≥0 anxn be a fixed power series with disk of convergence

|x| ≤ R.
(a) For any strictly increasing infinite sequence 〈ni〉 of positive integers,

consider the power series γ1(x) =
∑

i≥0 anix
ni−n0 . If α ∈ C such that

|α| < R, show the power series γ1(x) also converges at x = α.
(b) Show that

lim
x→0

γ(x) + γ(−x)
2

= a0 .

(c) For any positive integer m use part (a) to define the complex-valued
function fm on the open disk |x| < R by

fm(x) =
∑
i≥0

a(i+1)m−1x
im .

Show that

lim
x→0

fm(x)
mxm

= am−1 .

(d) Show that (
√

5 − 1)/2 is the radius of convergence of the Fibonacci
generating function.

Ex 4.27. Verify the pattern in (4.40) and thereby construct an argument
to convince yourself that the Reversion Formula holds for general m ≥ 2.

Ex 4.28. Let S(x) =
2

1 − 4x2
.

(a) Use the Reversion Formula (4.41) to calculate the first four elements
of the sequence with generating function S(x).

4.6 Exercises 99

(b) Use the Fourier Reversion Method to calculate approximations to the
first four elements of this sequence.

(c) Use the partial fraction decomposition of S(x) to verify that you have
computed these terms correctly.

Ex 4.29. For any sequence 〈an〉 , define its exponential generating
function by

E(an) =
∑
n≥0

an

n!
xn .

In particular, E((−1)n) = e−x and E(n!) = 1/(1 − x). Show that
(a) For any positive integer m, E(an+m) = Dm(E(an)).
(b) For any polynomial p(x), E(p(n)an) = p(xD)(E(an)).
(c) E(an)E(bn) = E(

∑n
k=0

(
n
k

)
akbn−k).

Ex 4.30. For the recurrence

an+1 = (n + 1)an + (−1)n with a0 = 1 ,

show directly that E(an) = E((−1)n)E(n!), and then use the last problem

to show that an =
n∑

i=0

n!
i!

(−1)n.

Ex 4.31. A derangement of the finite set {1, 2, . . . , n} is a permutation
of the set in which every element is moved from its original position. Let
dn equal the number of derangements of the set {1, 2, . . . , n}. For instance,
d1 = 0, d2 = 1, d3 = 2. Let d0 = 1.

(a) Show that dn is the number of derangements of {1, 2, . . . , n + 1} in
which n + 1 is in the first position and 1 is not in the last place. Use
this idea to show that 〈dn〉 satisfies the second order recurrence

dn+1 = n(dn + dn−1) .

(b) Setting bn+1 = dn+1 − (n + 1)dn, show that bn+1 + bn = 0 holds for
all n ≥ 0. This shows that 〈dn〉 satisfies the first–order recurrence in
the last problem.

(c) Find a finite sum that describes the probability that a permutation
is a derangement. Show that this probability converges to 1/e as
n → ∞.

5
Nonnegative Difference Equations

In this chapter we consider nonnegative difference equations. Our pro-
totype, the Fibonacci sequence

fn = fn−1 + fn−2; f0 = 0 , f1 = 1 ,

is a nonnegative system because all coefficients and all initial values are
nonnegative. We’ve shown earlier (in Chapter 1) that elements of the Fi-
bonacci sequence have the form given in Binet’s Formula

fn =
1√
5
(λn

0 − λn
1) ,

where λ0 = (1 +
√

5)/2 and λ1 = (1 −
√

5)/2 are the roots of the charac-
teristic polynomial, ch(x) = x2 − x− 1. Although λ0 and λ1 are irrational,
fn is an integer, and in fact,

fn = Round(λn
0 /

√
5) for all n ≥ 0,

where Round(X) is the function that returns the integer nearest to X . This
implies the asymptotic size fn = Θ(λn

0), where λ0 is the positive eigenvalue
of the recurrence. We’d like to generalize this example and discover what
properties hold for solutions of the generalized problem. For example, for
integer k ≥ 3 the generalized Fibonacci sequence is the kth order
recurrence

f (k)
n = f

(k)
n−1 + f

(k)
n−2 + · · · + f

(k)
n−k

with initial values

f
(k)
0 = 0, f

(k)
1 = 1, f

(k)
2 = 2, f

(k)
3 = 22, . . . , f

(k)
k−1 = 2k−2 .

102 5. Nonnegative Difference Equations

We might guess that f
(k)
n = Θ(λn

0), where λ0 = λ0(k) is some nonnegative
number that depends on k. A further generalization is the homogeneous
nonnegative equation

(HNN) sn = c1sn−1 + c2sn−2 + · · · + cksn−k ,

where the ci’s are nonnegative and all initial conditions s0, . . . , sk−1 are
nonnegative. (We also assume that at least one of these initial conditions
is positive, or else the solution is the zero sequence.) We will investigate
whether any additional conditions are needed to ensure the existence of
a nonnegative number λ0 such that sn = Θ(λn

0). We also consider the
asymptotic size of solutions to nonhomogeneous nonnegative equations

(NN) sn = c1sn−1 + c2sn−2 + · · · + cksn−k + g(n) ,

where the ci’s are nonnegative, the initial conditions are nonnegative, and
the g(n) are functions with nonnegative values. Here we ask when sn =
Θ(g(n)) or sn = Θ(λn

0) for some λ0. As in previous chapters, much infor-
mation about the recurrence is encoded in its characteristic polynomial.

5.1 Nonnegative Polynomials

The purpose of this section is to study polynomials of the form

(5.1) p(x) = xk −c1x
k−1−· · ·−ck−1x−ck , with all ci ≥ 0 and ck = 0 .

These polynomials are called nonnegative, and are the characteristic poly-
nomials of nonnegative linear recurrences, recurrences that have the form
(NN). The study of these polynomials takes us through some classical areas
of mathematics that are often omitted from an undergraduate education
but are currently experiencing at least a small revival because of applica-
tions to computing, robotics, and other areas.

5.1.1 The dominant root

From the Fundamental Theorem of Algebra (refer to Appendix B) we know
that any polynomial p(x) has deg(p) complex roots when the roots are
counted according to multiplicity. It’s difficult to say how many of these
roots are real. One of the oldest results in this direction is Descartes’ Rule
of Signs, which relates the number of positive roots of a polynomial with
real coefficients to the number of sign changes among its coefficients. For us,
a sign change occurs in the polynomial when some coefficient is positive
and the next non-zero coefficient is negative, or vice versa. For instance,
x2 − 2x + 1 has two sign changes, and x30 + x20 − 5x10 − 7 has just one
sign change. Descartes’ Rule bounds the number of positive roots of a real

5.1 Nonnegative Polynomials 103

polynomial by its number of sign changes. Here’s the statement of the rule
and a proof.

Theorem 5.1.1 (Descartes’ Rule of Signs). The number of positive
roots (counted according to multiplicity) of a polynomial with real coeffi-
cients is no more than the number of sign changes among its coefficients.

Proof. We proceed by induction both on the number of sign changes n in
the polynomial p(x) = c0x

k + · · · + ck and on the degree k. When there
are no sign changes, p(x) has the same sign at every positive number and
therefore has no positive root. Because of this we may assume n > 0. The
induction hypothesis is that any polynomial with fewer than n sign changes
or with exactly n sign changes but whose degree is less than k has at most
n positive (real) roots.

If ck = 0, then p(x) = xP (x) for some polynomial P (x) that also has n
sign changes and whose degree is k − 1. The polynomial P (x) is covered
by our induction hypothesis, and its number of positive roots is therefore
at most n. Since p(x) = xP (x), every non-zero root of p(x) is a root of
P (x). This gives the conclusion for such p(x) and allows us to assume that
ck = 0.

Without loss of generality we may assume that p(x) has at least one
positive root, and set λ0 to be the least of its positive roots. Consider the
derivative of p(x),

p′(x) = kc0x
k−1 + (k − 1)c1x

k−2 + · · · + 2ck−2x + ck−1 .

The number of sign changes in p′(x) either equals the number for p(x) or is
one less, depending on whether ck−1 and ck have the same or opposite sign.
By the continuity of p(x) and p′(x), between every two different consecutive
real roots of p(x) there must be a local extremum and so at least one root
of p′(x). Together with Exercise 5.1 this implies that p(x) can have at most
one more positive root than p′(x) on the interval [λ0,∞). The proof is
completed by showing that p′(x) has at most n − 1 roots in this interval
(because then the number of positive roots of p(x) is at most n, since λ0

was chosen as its least positive root.)
If ck and ck−1 have opposite signs, then p′(x) has n − 1 sign changes.

Our induction hypothesis therefore limits the number of positive roots of
p′(x) to n−1, as claimed. If ck and ck−1 have the same sign, both p(x) and
p′(x) have n sign changes, and by induction p′(x) has at most n positive
roots. We will show that p′(x) has at least one root in the interval (0, λ0).
This follows from a bit of calculus. First considering the case in which
ck > 0, the values of both p(x) and p′(x) on any sufficiently small interval
containing zero are dominated by their constant terms and therefore are
both positive. So p(x) is increasing and positive at x = 0 but must decrease
to p(λ0) = 0, and p(x) has a relative maximum (which is a root of p′(x))
on the interval (0, λ0). When ck < 0, this argument can be applied to

104 5. Nonnegative Difference Equations

q(x) = −p(x) to obtain a relative minimum for p(x). In either case, p(x)
has a relative extremum on (0, λ0), and continuity yields a root of p′(x) in
the interval (0, λ0) as claimed.

In 1637 Descartes stated this rule of signs without proof in his famous
book La Géométrie [149]. During the next two centuries several others
proved and refined the rule. Among these was Carl Friedrich Gauss, [70]
who in 1828 provided the additional information that the difference between
the number of positive roots and the number of sign changes is always an
even number. Sturm’s Theorem (Mémoire sur la résolution des équations
numériques, published in 1829) is another classic theorem in this vein. In its
simplest version it yields an algorithm for counting the number of real roots
of P (x) in any interval. More complicated versions allow the determination
of the number of roots of a polynomial P (x) subject to sign constraints on
another polynomial Q(x). These theorems fell into relative obscurity until
revived by Tarski in 1940 [157] to prove an abstract result in mathematical
logic.

Nonnegative polynomials p(x) have exactly one sign change and so can
have at most one positive root. On the other hand, since p(0) = −ck is
negative and lim

x→+∞ p(x) = +∞, the Intermediate Value Theorem implies

that p(x) has at least one positive root. Therefore, we obtain the following
corollary.

Corollary 5.1.2. A nonnegative polynomial has exactly one positive root
and it is a simple root.

We next show that among all roots of a nonnegative polynomial, its sole
positive root has the largest complex modulus.

Theorem 5.1.3. If λ0 is the positive root of a nonnegative polynomial
p(x), then λ0 is a dominant root, in the sense that any other root λ ∈ C

satisfies |λ| ≤ λ0.

Proof. If λ is any root of p(x), then

λk = c1λ
k−1 + c2λ

k−2 + · · · + ck ,

and the absolute value inequality yields

|λ|k = |λk| ≤ |c1λ
k−1| + |c2λ

k−2| + · · · + |ck|
= c1|λ|k−1 + c2|λ|k−2 + · · · + ck .

We conclude that

p(|λ|) = |λ|k − c1|λ|k−1 − · · · − ck ≤ 0 ,

and from Exercise 5.2 this implies |λ| ≤ λ0.

5.1 Nonnegative Polynomials 105

Do nonnegative polynomials ever have other roots of modulus λ0? Not
only is it possible to show that the answer to this question is yes, but we
can actually find all roots whose modulus is λ0 without doing much work
at all. This is described in the next theorem. We again make use of the
mth roots of unity (refer to Appendix B), complex numbers ζ such that
ζm = 1.

Theorem 5.1.4. Let λ0 be the positive root of the nonnegative polynomial
p(x) = xk − c1x

k−1 − · · · − ck. If the index of imprimitivity g is defined
to be the gcd of the set of indices of non-zero coefficients in p(x), then p(x)
has exactly g roots of modulus λ0, and these are the complex numbers of
the form λ0ζ, where ζ is a gth root of unity.

Before proving this result we consider a few examples. For a polynomial
of the form p1(x) = xk − 1 we have g = k, and the roots of the polynomial
are the gth roots of unity. For example, x4 − 1 has the four roots ±1,±i,
which can be written as i0, i1, i2, i3 since i is a primitive fourth root of unity.
Next, let’s look at the polynomial p2(x) = x4 − x2 − 1 = (x2)2 − (x2) − 1.
To find its positive root, we apply the quadratic formula to get

x2 =
1 ±

√
5

2
,

which leads to its positive root

λ0 =

√
1 +

√
5

2
.

Since the only non-zero coefficients are c2 and c4, then g = 2, the gth roots
of unity are ±1, and the theorem correctly says that ±λ0 are the two roots
whose modulus is maximal. For a more interesting example, consider the
nonnegative polynomial p3(x) = x9 − 3x6 − 7. Even though we don’t know
the value of λ0, from the theorem we know that it has exactly three roots
of modulus λ0, since gcd{3, 9} = 3.

Proof of Theorem 5.1.4. If ζ is both a second root and a third root of unity,
ζ is in the set {−1, 1} and also in the set {1, e2π/3, e4π/3}, which implies
that ζ = 1. This observation is generalized in Exercise 5.6 where you show
that if g is the gcd of a finite set G of integers, then ζ is a gth root of
unity iff ζ is an ith root of unity for every i ∈ G. We apply this here with
G = {i : ci > 0}, the set of indices of the negative coefficients of p(x).
Since λ0 is the dominant root of p(x), it suffices to prove that ω is a root
of p(x) with |ω| = λ0 iff ζ = ω/λ0 is an ith root of unity for all i ∈ G.

If ζ is a complex number with ζi = 1 for all i ∈ G, then

ζ−k · p(λ0ζ) = λk
0 −

∑
i∈G

ciλ
k−i
0 ζ−i = λk

0 −
∑
i∈G

ciλ
k−i
0 = p(λ0) = 0 ,

106 5. Nonnegative Difference Equations

and ω = λ0ζ is indeed a root of p(x). On the other hand, suppose ω = ζλ0

is a root of p(x) with |ω| = λ0. Then

0 = p(ζλ0) = ζkλk
0 − c1ζ

k−1λk−1
0 − · · · − ck ;

λk
0 =

∑
i∈G

ciλ
k−i
0 ζ−i ,

and p(λ0) = 0 implies

λk
0 = c1λ

k−1
0 + · · · + ck =

∑
i∈G

ciλ
k−i
0 .

Subtracting these two equations gives

(5.2) 0 =
∑
i∈G

ciλ
k−i
0 (1 − ζ−i) .

Notice that since each ζ−i lies on the unit circle, the real part of each 1−ζ−i

is 1− cos(−iθ) (where θ is the argument of ζ) and so must be nonnegative.
Taking the real part of the two sides of (5.2), the left side is 0 and the right
side contains only nonnegative terms, since all λk−i

0 are positive (remember
that λ0 > 0). Therefore, the real part �(1 − ζ−i) must equal zero for all
i ∈ G. Again using the fact that each ζ−i lies on the unit circle, we note
that �(1 − ζ−i) = 0 iff ζ−i = 1, and we’ve proved that ζ is an ith root of
unity for all i ∈ G.

Returning to our examples, we see the fact that the index of imprimitivity
for p2(x) and p3(x) doesn’t equal 1 allows us to write the polynomials as
p2(x) = (x2)2 − (x2) − 1 and p3(x) = (x3)3 − 3(x3)2 − 7, displaying a sort
of periodicity. Because of this, we call a nonnegative polynomial periodic
when its index of imprimitivity does not equal one, otherwise we call it
primitive (or aperiodic). Combining Theorem 5.1.3 with Theorem 5.1.4,
we obtain the following corollary.

Corollary 5.1.5. Any primitive nonnegative polynomial has a unique root
of largest modulus, usually referred to as the strictly dominant root.

5.2 When are integer solutions rounded powers of
an eigenvalue?

We’ve shown that the Fibonacci sequence satisfies

(5.3) fn = Round(λn
0 /

√
5) for all n ≥ 0 ,

where Round(X) returns the integer nearest to X . Is this a special property
of the Fibonacci sequence, or are there more general sequences with this

5.2 When are integer solutions rounded powers of an eigenvalue? 107

feature? The proof of (5.3) did use properties of the Fibonacci sequence.
For instance, the absolute value of the nondominant eigenvalue is relatively
small when compared to λ0, and the initial deviations are small. When we
speak of deviation here we mean the difference between the actual element
of the sequence and the approximation. (Occasionally we may use the term
deviation when we mean the absolute value of the deviation.) For example,

dn = fn − λn
0 /

√
5

is the nth Fibonacci deviation. More generally, we want to approximate
the elements of an integer recurrence sequence 〈sn〉 by numbers of the
form αλn

0 , where λ0 is the dominant eigenvalue and α is a constant that
depends on the initial values. We’d like the absolute values of the deviations
dn = sn − αλn

0 to start small and stay small, although they need not be
decreasing. (The results in this section are based on Capocelli and Cull
[23].)

Let’s first consider the special case in which the eigenvalues, λ0, . . . , λk−1,
are all simple. From previous work we know that then sn can be written as

sn =
k−1∑
i=0

αiλ
n
i

for some constants α0, . . . , αk−1 ∈ C. For the approximation of sn by α0λ
n
0

the deviations satisfy

dn = sn − α0λ
n
0 =

k−1∑
i=1

αiλ
n
i ,

and the familiar absolute value inequality gives

(5.4) |dn| ≤
k−1∑
i=1

|αi||λi|n.

For instance, if each nondominant eigenvalue were to satisfy |λi| ≤ 1, then
sn = Round(α0λ

n
0) holds whenever

∑k−1
i=1 |αi| < 1/2. This result isn’t as

good as it might seem, because in order to apply it we have to calculate
all α1, . . . , αk−1 ! In an effort to obtain a more effective result, let’s per-
form a more thorough analysis of (5.4) from a graphical point of view. The
deviations can be plotted as points (n, dn), which can dance around (per-
haps erratically) beneath the envelope formed by the bounding function. If
the deviations behave very irregularly, any upper bound on them may be
a dramatic overestimation. One possible type of irregularity is a spiking
behavior, where the deviations might be close to zero for a while, say for
d0, d1, . . . , d5, but then d6 is relatively large in absolute value. Such spik-
ing could occur if λ1 = (1 − ε)ω, where ε is a small positive number and

108 5. Nonnegative Difference Equations

ω is a primitive 6th root of unity. Longer period spiking is also possible.
For instance, if ωi is a primitive ith root of unity with λ1 = (1 − ε1)ω3

and λ2 = (1 − ε2)ω5, then spiking behavior with period 15 can occur if
the period-3 spike augments the period-5 spike to give a large spike of
period 15. It’s possible to construct sequences with even longer periods,
because a number of short periods could join together in such a way to
give a long period. The moral here is that one pays for the smoothness of
the bound, since the estimating curve might not be very close to the de-
viations. For general recurrences, the enveloping curve given by the upper
bound in (5.4) may well be the best easy estimate on the deviations. We
will now show an additional restriction on the characteristic polynomial
that can give a stronger result that is often quick and easy to check.

Notice that since λ0 is a simple eigenvalue, then any solution has the
form

sn = αλn
0 + a1(n)λn

1 + · · · + ak−1(n)λn
k−1 for all n ≥ 0 ,

for some constant α and polynomials a1(x), . . . , ak−1(x).

Theorem 5.2.1. Let sn = αλn
0 + a1(n)λn

1 + · · · + ak−1(n)λn
k−1 be an in-

teger solution to (HNN) with dominant eigenvalue λ0. Set dn = sn − aλn
0

for all n ≥ 0 and let M = max{|d0|, . . . , |dk−1|}, the maximum of the ini-
tial deviations. We further assume that f(x) = (x − 1)ch(x)/(x − λ0) is a
nonnegative polynomial.
(a) If M < 1

2 , then sn = Round(αλn
0) for all n ≥ 0.

(b) If f(x) is primitive, sn = Round(αλn
0) for all sufficiently large n

because there is an n0 with max{|dn0 |, . . . , |dn0+k−1|} < 1/2.

Proof. There exist nonnegative b1, . . . , bk such that f(x) = xk − b1x
k−1 −

· · · − bk, where 1− b1 − b2 − · · · − bk = 0, since λ = 1 is a root of f(x). We
rewrite this as

∑
bi =

∑
|bi| = 1 and obtain that any solution 〈yn〉 of the

homogeneous recurrence with characteristic polynomial f(x) must satisfy

(5.5) |yn| ≤ max{|y0|, |y1|, . . . , |yk−1|} for all n .

(Refer to Exercise 5.9.) Since

dn = sn − αλn
0 = a1(n)λn

1 + · · · + ak−1(n)λn
k−1

is a solution to the difference equation with characteristic polynomial f(x),
(5.5) holds with yn = dn. Therefore, if the hypothesis of (a) holds, all
deviations satisfy |dn| ≤ M < 1/2, and sn = Round(αλn

0).
In part (b), the fact that f is primitive means that its only positive root

λ = 1 is strictly dominant. Ordering the roots by

λ0 = 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λk−1|,
we have

(5.6) |dn| ≤
k−1∑
i=1

|ai(n)||λi|n ≤ |λ1|n
k−1∑
i=1

|ai(n)|.

5.2 When are integer solutions rounded powers of an eigenvalue? 109

Since each ai(n) is a polynomial whose degree is less than the multiplicity
of λi, then deg(ai) < k and we can find positive constants N, C such that
each |ai(n)| is less than Cnk for all n ≥ N . Equation (5.6) gives

|dn| ≤ |λ1|nCknk for all n ≥ N .

Since |λ1|n is exponentially decreasing to 0 while nk is only growing at
polynomial rate, the inequality |dn| < 1/2 eventually holds, and part (a)
yields sn = Round(αλn

0) for sufficiently large n.

Do we have to explicitly find f(x) (and so calculate λ0) in order to apply
this result? Fortunately, there is a relatively easy condition that ensures
that f is nonnegative.

Let 〈Hn〉 be the sequence defined by the first–order recurrence

H0 = 1, Hn = λ0Hn−1 − ψ(n) ,

where ψ(n) is the sequence whose first k terms are the coefficients c1, . . . , ck

and all later terms are zero. Since λ0 is a root of ch(x) = xk − c1x
k−1 −

· · · − ck, then

Hk = λ0Hk−1 − ck = λ0(λ0Hk−2 − ck−1) − ck = · · · = ch(λ0) = 0 ,

and Theorem 3.1.2 gives

Hn =

⎧⎨⎩λn
0 −

n∑
i=1

ciλ
n−i
0 for n < k,

0 for n ≥ k.
(5.7)

Also, it can be checked that

(x − λ0)(xk−1 + H1x
k−2 + · · · + Hk−1) = ch(x) ,

and the polynomial f(x) is

f(x) = (x − 1)
ch(x)
x − λ0

= (x − 1)(xk−1 + H1x
k−2 + · · · + Hk−1)

= xk − (1 − H1)xk−1 − (H1 − H2)xk−2 − · · · − (Hk−2 − Hk−1)x − Hk−1 .

The nonnegativity of f(x) is therefore equivalent to

(5.8) 1 ≥ H1 ≥ H2 ≥ · · · ≥ Hk−1 > 0 ,

where the condition Hk−1 > 0 is free because

0 = Hk = λ0Hk−1 − ck and Hk−1 = ck/λ0 > 0.

It might seem that testing H1 = λ0 − c1 ≤ 1 requires knowledge of λ0. But
recall (refer to Exercise 5.2) that we have the characterization of λ0 given
by

for positive x , ch(x) ≥ 0 ⇐⇒ x ≥ λ0 ,

110 5. Nonnegative Difference Equations

a condition that is practical and quick to check. (In Section 5.4 we discuss
Horner’s Method, in which polynomial evaluation is performed in at most
k multiplications.) When the strict inequality ch(c1 + 1) > 0 holds, the
coefficient of xk−1 in f(x) must be positive, and so f(x) is definitely prim-
itive. As far as the other conditions in (5.8), from (5.7) we know that for
all n < k − 1,

Hn+1 = λn+1
0 − c1λ

n
0 −

n+1∑
i=2

ciλ
n+1−i
0 = λn

0 (λ0 − c1) −
n∑

i=1

ci+1λ
n−i
0 ,

which gives

Hn − Hn+1 = λn
0 (c1 + 1 − λ0) +

n∑
i=1

(ci+1 − ci)λn−i
0 .

Therefore, Hn > Hn+1 is implied by the conditions

c1 + 1 > λ0 and cn+1 ≥ cn+1 ≥ · · · ≥ c2 ≥ c1 ,

which are easy-to-check restrictions on the coefficients of the original char-
acteristic polynomial ch(x). These observations are collected in the follow-
ing theorem.

Theorem 5.2.2 (The Rounding Theorem). Let λ0 be the dominant
eigenvalue of a homogeneous nonnegative recurrence (HNN) whose coeffi-
cients satisfy

(5.9) ck−1 ≥ · · · ≥ c1 and ch(c1 + 1) ≥ 0 .

Suppose 〈sn〉 is a integer solution of (HNN), then:
(a) If max{|d0|, . . . , |dk−1|} < 1/2, then sn = Round(αλn

0) for all n ≥ 0.
(b) If the strict inequality ch(c1+1) > 0 holds, then sn = Round(αλn

0) for
all n ≥ n0, where n0 is such that max{|dn0 |, . . . , |dn0+k−1|} < 1/2.

5.2.1 Using the Rounding Theorem

As we’ve seen before, the Fibonacci recurrence can be generalized to a kth

order recurrence for any k ≥ 3 by

f0 =0, f1 = 1, f2 = 2, . . . , fk−1 = 2k−2 ,

fn = fn−1 + fn−2 + · · · + fn−k ,

which has

ch(c1 + 1) = ch(2) = 2k − 2k−1 − · · · − 2 − 1 = 2k − (2k − 1) = 1 > 0

and ci+1 ≥ ci, since each ci is 1. Hence the Rounding Theorem ensures the
existence of some α and n0 ≥ 0 such that fn = Round(αλn

0) for n ≥ n0,

5.2 When are integer solutions rounded powers of an eigenvalue? 111

where the values of α and n0 depend on the initial conditions. We can
work backwards from the initial values and obtain an equivalent set of
initial conditions, f−(k−2) = f−(k−3) = · · · = f−1 = f0 = 0 and f1 = 1.
(This translation doesn’t change the value of either α or n0 and allows an
easier computation of α and the deviations.) From Exercise 4.23,

α =
λ0 − 1

λ0[(k + 1)λ0 − 2k]
,

and the corresponding deviations are

d−(k−2) = 0 − αλ
−(k−2)
0 ,

d−(k−3) = 0 − αλ
−(k−3)
0 ,

...
d0 = 0 − α ,

d1 = 1 − αλ0 .

Notice that max{|d−(k−2)|, |d−(k−3)|, . . . , |d0|, |d1|} = max{|d0|, |d1|} be-
cause ch(1) = −(k − 1) implies λ0 > 1. Also, d1 is positive, because other-
wise dn is always negative and so has a λn

0 component. If we can show that
both α < 1/2 and 1−αλ0 < 1/2, then we can take n0 = −(k− 2), and the
generalized Fibonacci numbers can be calculated by fn = Round(αλn

0) for
all n ≥ −(k − 2).

To show that 1 − αλ0 < 1/2, it suffices to have
2(λ0 − 1)

(k + 1)λ0 − 2k
> 1.

From Exercise 5.4, the denominator is positive, and the requirement can
be written as 0 > (k − 1)(λ0 − 2), which is true because 2 > λ0.

To show that 1/2 > α, we want

1
2

>
λ0 − 1

λ0[(k + 1)λ0 − 2k]

which can be rewritten as 2 > (k + 1)λ0(2 − λ0) (since the denominator is
positive). Using 2 − λ0 = λ−k

0 , this is equivalent to the inequality 2λk−1
0 >

k+1. For k = 2, this reduces to λ0 > 3/2, which is easy to verify. For k > 2,
we use λk−1

0 = λk−2
0 +· · ·+1+ 1

λ0
to get 2λk−1

0 = 2(λk−2
0 +· · ·+ 1

λ0
) > 2(k−1)

using the fact that λ0 > 1. Finally, 2(k − 1) ≥ k + 1 if k ≥ 3, and 1/2 > α
is established. For another example, let’s consider

(5.10) sn = 2sn−1 + 2sn−2 + 3sn−3

with ch(x) = x3 − 2x2 − 2x − 3, a nonnegative polynomial with dominant
root λ0 = 3. Here c2 = 2 ≥ c1 and c1 + 1 = 3 = λ0. Because c1 + 1 equals
the dominant root, eventual roundability is not ensured but depends on

112 5. Nonnegative Difference Equations

the deviations, which in turn are specified by the initial conditions. Next
we look at this recurrence under various choices of initial conditions, using
the fact that α = 1

13 (s0 + s1 + s2). (Refer to Exercise 5.10.)
For s0 = 1, s1 = 3, s2 = 9, then α = 1 and the deviations are:

d0 = s0 − α = 1 − 1 =0 ,

d1 = s1 − αλ0 = 3 − 3 =0 ,

d2 = s2 − αλ2
0 = 9 − 9 =0 ,

and the Rounding Theorem implies

sn = Round(αλn
0) = Round(3n) = 3n .

(This sequence could have been obtained directly without using the Round-
ing Theorem.) For the initial conditions s0 = 0, s1 = 0, s2 = 1, roundability
is not obvious without the theorem. The coefficient is α = 1/13 with devi-
ations

d0 = 0 − 1/13 = −1/13 ,

d1 = 0 − 3/13 = −3/13 ,

d2 = 1 − 9/13 = 4/13 .

Since the absolute values of the initial deviations are bounded by 1/2, then
sn = Round(1

13λn
0) for all n ≥ 0. Our final choice of initial conditions for

the recurrence (5.10) is s0 = 0, s1 = 3, s2 = 9. Here, α = 12/13 and the
deviations are

d0 = 0 − 12
13

= −12
13

,

d1 = 3 − 12
13

∗ 3 =
3
13

,

d2 = 9 − 12
13

∗ 32 =
9
13

.

In this case, the initial deviations are not all less than 1/2 in absolute value
and neither immediate rounding nor eventual rounding is promised by the
Rounding Theorem since c1 + 1 = λ0. It is easy to calculate that

d3 = 24 − 12
13

∗ 33 = −12
13

,

d4 = 75 − 12
13

∗ 34 =
3
13

,

d5 = 225 − 12
13

∗ 35 =
9
13

,

and in Exercise 5.11 you verify that this pattern continues, that is, the
sequence of deviations is periodic with period 3. Because the deviations do
not decrease below 1/2, even eventual rounding doesn’t occur.

5.3 Estimation of the Roots 113

5.3 Estimation of the Roots

5.3.1 Estimation of the dominant root

In Section 5.5 we will show that for nonnegative difference equations, sn =
Θ(λn

0) often holds. In fact, when the nonnegative equation is primitive, the
dominant eigenvalue λ0 is simple and limn→∞ (sn/λn

0) = α holds for some
constant α. Because of this, we want to estimate the dominant root of the
recurrence in order to find the long-term behavior of solutions.

Lemma 5.3.1. The root λ0 depends on c1 + c2 + · · ·+ ck in the following
way:

(1) if c1 + · · · + ck = 1, then λ0 = 1;

(2) if c1 + · · · + ck > 1, then 1 < λ0 < c1 + · · · + ck;

(3) if c1 + · · · + ck < 1, then c1 + · · · + ck < λ0 < 1.

Proof. We observe that p(1) = 1 − S, where S = c1 + · · · + ck. Since λ0 is
the only positive root of p(x), then λ0 = 1 iff S = 1, which proves (1) and
allows us to assume λ0 = 1. Recall that

λ0 > 1 ⇐⇒ 0 > p(1) = 1 − S ⇐⇒ S > 1 ,

the required relative ordering of λ0 and 1. Further,

p(S) = Sk − c1S
k−1 − · · · − ck−1S − ck

= (S − c1)Sk−1 − c2S
k−2 − · · · − ck−1S − ck

= (c2 + · · · + ck)Sk−1 − c2S
k−2 − · · · − ck−1S − ck

= c2S
k−2(S − 1) + c3S

k−3(S2 − 1) + · · · + ck−1S(Sk−2 − 1)

+ ck(Sk−1 − 1) ,

and the facts that each ci is nonnegative and ck > 0 imply

S > 1 ⇐⇒ p(S) > 0 ⇐⇒ S > λ0,

as required.

This lemma gives bounds on the dominant root, positioning it between 1
and c1 + · · · + ck. This will be a useful first approximation for Newton’s
method in Section 5.4.

5.3.2 Estimation of the second root

While estimates of the dominant root of the recurrence are used to find
the asymptotic behavior, bounds on the second eigenvalue tell how quickly

114 5. Nonnegative Difference Equations

and in what sense the solution approaches the long-term behavior. When
the nonnegative equation is primitive, there exists a polynomial β(x) such
that

|sn − αλn
0 | < β(n)|λ1|n ,

where λ1 is the maximum of the nondominant eigenvalues. From this we
see that when |λ1| < 1, there exist positive constants β, M with M < 1
such that

(5.11) |sn − αλn
0 | < βMn ,

and 〈sn〉 converges to αλn
0 in the sense of absolute error. On the other

hand, when |λ1| ≥ 1 there exist β and M with 1 < M < λ0 such that

(5.12)
∣∣∣ sn

λn
0

− α
∣∣∣ < β

(M

λ0

)n

,

and 〈sn〉 is said to converge to αλn
0 in the sense of relative error.

In Appendix D we describe an algorithm for counting the number of roots
of a polynomial within the (complex) unit circle |z| < 1. If the algorithm
finds that the kth degree characteristic polynomial has at least k − 1 roots
inside the unit circle, then |λ1| < 1, and the above analysis gives absolute
error convergence of 〈sn〉 to αλn

0 . On the other hand, if it’s found that there
are fewer than k−1 roots within the circle, only relative error convergence is
obtained from this argument. The method in Appendix D does not actually
compute an M with λ0 > M > |λ1|. We might instead take the nonnegative
polynomial p(x) and its positive root λ0 and find the least M for which
(x − M)p(x)/(x − λ0) is a nonnegative polynomial. Unfortunately, this
method may only yield M = λ0. Next we prove some upper bounds on the
nondominant roots of a nonnegative polynomial.

Theorem 5.3.2. Consider a polynomial p(x) = xk − c1x
k−1 − · · · − ck,

where all ci are strictly positive (and so p(x) is primitive.) Then

M = max
{

c2

c1
,

c3

c2
, . . . ,

ck

ck−1

}
is an upper bound on |λ1|.

Proof. Since the conclusion follows if M > λ0, we may assume M ≤ λ0.
Multiplying p(x) = xk − c1x

k−1 − · · · − ck−1x − ck by x − M gives

xk+1 − (c1 + M)xk + (Mc1 − c2)xk−1 + · · · + (Mck−1 − ck)x + ckM ,

a polynomial that we call q(x). Since any root of p(x) is also a root of q(x),
then q(λ1) = 0, which means that

λk+1
1 + (Mc1 − c2)λk−1

1 + · · · + (Mck−1 − ck)x + ckM = (c1 + M)λk
1 .

5.3 Estimation of the Roots 115

The definition of M implies that all coefficients on the left side are positive,
and taking absolute values gives

|λ1|k+1 + (Mc1 − c2)|λ1|k−1 + · · · + ckM ≥ (c1 + M)|λ1|k ,

with q(|λ1|) = (|λ1|−M)p(|λ1|) ≥ 0. Because p(x) is a nonnegative polyno-
mial, its values change from negative to positive at x = λ0, and primitivity
implies that λ0 is strictly dominant. This means that p(|λ1|) < 0, and
q(|λ1|) ≥ 0 gives |λ1| ≤ M .

For example, if c1 > c2 > c3 > · · · > ck > 0, then |λ1| < M < 1, and
(5.11) says that any nonnegative solution 〈sn〉 has limiting behavior in the
absolute error sense, that is, limn→∞ |sn − αλn

0 | = 0.
If any of c1, . . . , ck−1 are zero, then Theorem 5.3.2 cannot be used to get

an upper bound on λ1. Another result is the following.

Theorem 5.3.3. Let p(x) = xk − c1x
k−1 − · · · − ck be a nonnegative

polynomial with positive root λ0. If Hi = λi
0 − c1λ

i−1
0 − · · · − ci for all

i = 1, . . . , k (as used earlier in (5.7)), then the maximum of the absolute
values of the roots of p(x) excluding λ0 satisfies

(5.13) |λ1| ≤ max
{
H1,

H2

H1
,
H3

H2
, . . . ,

Hk−1

Hk−2

}
.

Proof. (In Exercise 5.14 you show that each Hi is positive.) We may assume
that the maximum in (5.13) is strictly less than λ0, since otherwise the con-
clusion holds. The roots of the polynomial p(x)/(x − λ0) are λ1, . . . , λk−1,
and

p(x)
x − λ0

= xk−1 + H1x
k−2 + · · · + Hk−1 .

Also, for any positive w the polynomial g(x) = (x − w)
p(x)

x − λ0
has only one

positive root and

g(x) = xk − (w − H1)xk−1 − (H1w − H2)xk−2

− · · · − (Hk−2w − Hk−1)x − w Hk−1 .

Restricting w to

w > max
{
H1,

H2

H1
, . . . ,

Hk−1

Hk−2

}
,

only the leading coefficient of g(x) is positive, and the coefficient of xk−1

is strictly negative. Therefore, g(x)is a primitive polynomial with strictly
dominant root w. Since w can be taken arbitrarily close to the maximal
element of (5.13), |λ1| must be less than or equal to this maximum.

116 5. Nonnegative Difference Equations

Example 5.3.1. Consider the generalized Fibonacci polynomial xk−xk−1−
· · · − 1, whose dominant root satisfies λ0 < 2. (Refer to Exercise 5.4.) To
apply the last theorem we need to bound the various H ’s. It is true that
1 > H1 > H2 > · · · > Hk−1, because 1 > H1 = λ0 − 1 (since 2 > λ0), and
Hi > Hi+1 is equivalent to λi

0 > λi+1
0 −λi

0. Finally, H1 = λ0−1 > λ0− 1
Hi

=
Hi+1
Hi

because 1 > Hi. So for the generalized Fibonacci polynomial, the
maximum in (5.13) occurs at H1, and the result gives |λ1| ≤ λ0 − 1, a
slightly better bound than |λ1| < 1.

Note that in general, Hi+1
Hi

= λ0 − ci+1
Hi

holds, and this shows:

Corollary 5.3.4. |λ1| ≤ λ0 − min
{

c1,
c2

H1
, . . . ,

ck−1

Hk−2

}
.

We can also write the result in yet another form. For this, set

gi =
k∑

j=i

cjλ
k−j
0 = ciλ

k−i
0 + · · · + ck−1λ0 + ck ,

where 0 = p(λ0) = λk−i
0 Hi − gi+1. Therefore,

Hi =
gi+1

λk−i
0

and
Hi+1

Hi
=

gi+2

λk−i−1
0

· λk−1
0

gi+1
=

gi+2

gi+1
λ0 ,

and Theorem 5.3.3 can be rewritten as:

Corollary 5.3.5. |λ1| ≤ λ0 max
{

g2

λk
0

,
g3

g2
,
g4

g3
, . . . ,

gk

gk−1

}
.

5.4 Calculation of the Roots

As we said earlier, we want an efficient algorithm for computing the dom-
inant root to desired accuracy because the dominant root can be used to
find the long-term behavior of solutions. Beginning with any interval [L, U]
that contains λ0, another interval approximation of λ0 can be obtained by
computing p(M) for M = (U + L)/2. (Refer to Figure 5.1.) If p(M) = 0,
then M = λ0 and we’ve located the root. If p(M) > 0, we replace U by M
and otherwise replace L by M . This method, usually called the Bisection
Method, is guaranteed (up to round-off error) to produce a sequence of
decreasing intervals that always contain λ0. Since the interval is halved at
each step, repeating the bisection method for n steps produces an inter-
val of length (U − L)/2n that is known to contain λ0. In order to apply
the Bisection Method we need an initial interval that contains the root.
For a nonnegative polynomial, the single positive root is between 1 and
c1 + · · · + ck (recall Lemma 5.3.1), and so good starting values for U and
L are immediately available.

5.4 Calculation of the Roots 117

λ UL

–1

0

1

2

0.5 1 1.5 2 2.5

FIGURE 5.1. A nonnegative polynomial with the U and L to be used in calcu-
lating the root λ.

Bisection Method
The following code finds an interval of width E that contains the root
of the polynomial p(x) when started with an interval [L, U], where p(L)
and p(U) have different signs.

A := p(U)
B := p(L)
WHILE U − L > E DO

MID := (U + L)/2
C := p(MID)
IF A ∗ C > 0 THEN A := C

U := MID
ELSE B := C

L := MID

The decision rule used in our procedure for the Bisection Method requires
polynomial evaluation. If direct substitution is used, every evaluation of an
arbitrary polynomial of p(x) = c0x

d + c1x
d−1 + · · ·+ cd of degree d at some

x = a generically requires Θ(d2) multiplications. The following code, which
is usually called Horner’s Method, uses only d multiplications.

118 5. Nonnegative Difference Equations

Horner’s Method
A polynomial of the form p(x) = c0x

d + c1x
d−1 + · · · + cd can be evalu-

ated at x = a by the following code which uses d multiplications and d
additions.

H := c0

FOR i := 1 TO d DO
H := H ∗ a + ci

Note that when the polynomial p(x) is monic (namely, c0 = 1) the terms
generated by Horner’s Method in the evaluation of p(x) at λ0 are exactly
the Hi defined earlier in (5.7). Also,

p(x) = (x − λ0)(xd−1 + H1x
d−2 + H2x

d−3 + · · · + Hd−1),

which is why Horner’s method is sometimes called synthetic division. In
1964 Pan [123] showed that Horner’s Method uses the fewest number of
operations to evaluate a polynomial at an arbitrary value when no precom-
puting using the coefficients is allowed. This does not preclude a method
for evaluating a polynomial at m values using fewer than md operations.
(Also refer to Exercise 38 in Section 4.6.4 in Knuth [88].)

Because a polynomial of degree d can be evaluated using Horner’s Method
in d multiplications and d additions, the Bisection Method will compute
the root to an accuracy of (U −L)/2n in Θ(nd) steps. Since multiplications
often take much more time than additions, the computing time is usually
given as only the number of multiplications. Therefore, if E is the desig-
nated error bound for the root and E0 the initial error bound, the root can
be found within error E using d log(E0/E) multiplications.

While the Bisection Method works reasonably well, there is another
method, Newton’s Method (sometimes called the Newton–Raphson
method), which usually locates a root more quickly. Again consider the
graph of a nonnegative polynomial, but this time include the tangent to
the curve y = p(x) at x = U and extrapolate the tangent until it intersects
the x-axis at some x-value, which we name U1. (Refer to Figure 5.2.) This
can be done because (refer to Exercise 5.2) for nonnegative polynomials
the tangent line at x = λ always has a positive slope when λ ≥ λ0. This
also guarantees that U1 < U . (From the graph we see that U1 is greater
than the positive root of p(x), which means that it lies between λ0 and
U .) This construction can be repeated using U1 in place of U , giving the
general iteration

(5.14) Un+1 = Un − p(Un)
p′(Un)

5.4 Calculation of the Roots 119

because the value of the derivative p′(Un) equals the slope of the tangent

line,
p(Un) − 0
Un − Un+1

. The formula in (5.14) is a nonlinear recurrence and defines

the iterative procedure known as Newton’s Method. Although there is little
chance that we can write a closed-form solution to this recurrence, we would
like to know whether it converges to λ0 as well as to have an idea of the
rate of convergence.

0

5

10

15

20

2 3 4 5

x

FIGURE 5.2. A nonnegative polynomial with two tangent lines indicated. The
tangents cross the axis at the successive Newton approximations to the root of
the polynomial.

The following is a standard theorem for Newton’s method applied to a
general polynomial (for a proof refer to [20, 155]).

Theorem 5.4.1 (Newton’s Method). For any polynomial and any sim-
ple real root R there is a small interval around R such that if Newton’s
method is started at any point within this interval, the approximations found
by Newton’s method will stay in the interval and converge to R. Further,
if the error Ei is the distance from R at the ith step of Newton’s method,
then Ei+1 = O(E2

i)—this is called quadratic convergence.

There are several practical problems with this theorem. One is that it
only states the existence of the interval and it does not tell how to find it.
Also, it only promises rapid asymptotic convergence. When the polynomial
is nonnegative, the graph in Figure 5.2 suggests that Newton’s Method
might yield a sequence that is rapidly decreasing to λ0.

120 5. Nonnegative Difference Equations

Recall that we plan to initialize Newton’s Method with either U0 = 1 or
U0 = c1 + · · ·+ ck, according to whether p(1) is positive or negative. We’ve
shown that the constructed sequence 〈Un〉 is decreasing, provided each Un

is greater than λ0, that is, provided each error En = Un − λ0 is positive.
The sequence of errors has the form

(5.15) En+1 = Un+1 − λ0 = En − p(Un)
p′(Un)

=
Enp′(Un) − p(Un)

p′(Un)
,

and expanding each of p(x) and p′(x) into its Taylor series about λ0 (refer
to Appendix B) gives

p(x) =
d∑

i=1

p(i)(λ0)
i!

(x − λ0)i and also p′(x) =
d−1∑
i=0

p(i+1)(λ0)
i!

(x − λ0)i ,

where p(i)(x) is the ith derivative of p(x). This means that

Enp′(Un) − p(Un) = En

d−1∑
i=0

p(i+1)(λ0)
i!

(En)i −
d∑

i=1

p(i)(λ0)
i!

(En)i

=
d∑

i=1

(1
(i − 1)!

− 1
i!

)
p(i)(λ0)Ei

n =
d∑

i=2

i − 1
i!

p(i)(λ0)Ei
n

and

En+1 =
d∑

i=2

i − 1
i!

p(i)(λ0)
p′(Un)

Ei
n ,

where Un = λ0+En. For sufficiently small En, p′(Un) ≈ p′(λ0) and En+1 ≈
p(2)(λ0)
2p′(λ0)

E2
n, and since both p(i)(λ0) and p′(Un) are positive, En and En+1

must have the same sign. Therefore, Newton’s method does yield a sequence
that is monotonically decreasing to λ0, provided the initial value is greater
than λ0.

If Newton’s method is applied to functions that are not nonnegative
polynomials, then various types of odd behavior are possible (refer to [142],
[160]). But even for nonnegative polynomials, Newton’s method is only
guaranteed to converge to the positive root when the initial value is larger
than λ0. For example, consider the nonnegative polynomial f(x) = x3−5x,
which has the three distinct real roots: −

√
5, 0, and λ0 =

√
5. Newton’s

formula for this polynomial can be written as

N(x) = x − x(x2 − 5)
3x2 − 5

=
2x3

3x2 − 5
,

where
√

5 < N(x) < x holds for x >
√

5. When the iteration is started
at some x >

√
5, the iteration will monotonically decrease to

√
5. But for

5.4 Calculation of the Roots 121

instance if the iteration were started at x = 1, then

N(1) = −1 and N(−1) = 1 ,

and the Newton iteration oscillates with period 2. Such values of period 2
satisfy x = N (2)(x), the two-fold iteration of N , and so they must be zeros
of the polynomial

x(x2 − 1)(x2 − 5)(4x4 − 15x2 + 25) ,

where x = 0 and x = ±
√

5 are fixed points (have period 1). As we saw
above, the points x = ±1 are points of period 2, and this polynomial has
four other (nonreal) roots, which are also points of period 2.

It is straightforward but extremely tedious to derive an analogous 27th

degree polynomial from x = N (3)(x), the third iterate of N . After eliminat-
ing the three points of period 1 there remain 24 points of period 3, some of
which might not be real. Similarly, for any n one can derive a polynomial
from x = N (n)(x), a polynomial whose roots have period dividing n. Once
the points that have a period that is a proper divisor of n are eliminated,
all remaining points oscillate with period n under the Newton iteration.

This shows that one should exercise care in picking a good starting point,
because even something as seemingly simple as Newton’s method applied to
a nonnegative polynomial can have complicated behavior. In practice, these
complications are unlikely to arise, because round-off error will usually be
sufficient to keep the iteration from settling down into periodic behavior.
A more practical difficulty is starting at or near a zero of the derivative.
This can throw the iteration into some unexpected region and may lead
to numerical underflow or overflow. For nonnegative polynomials, starting
at x > λ0 ensures that the derivatives have non-zero values. In summary,
Newton’s method is well-behaved when used to find the positive root of a
nonnegative polynomial, but you must remember to use a starting value
that is larger than the root.

Newton’s method can also be used to approximate the other roots of a
nonnegative polynomial, but these roots have some extra complications.
For instance, we do not know a good initial estimate for the second root.
Also, the second root may be nonreal. While there is a variant of Newton’s
Method that can be used for complex numbers, other methods are more
effective [1].

5.4.1 The rate of convergence in Newton’s method

To obtain additional insight into the behavior of Newton’s method for
nonnegative polynomials p(x) we look at the sequence of errors. For this
it’s helpful to write E(x) = x − λ0 and Ê = E(N(x)). Suppressing all
occurrences of the variable x, the error equation (5.15) becomes

Ê = E2α ,

122 5. Nonnegative Difference Equations

where α = (Ep′−p)/p′E2 is a function of x. Since E = x−λ0 is a factor of
p(x), there exists a polynomial q such that p = Eq, and using the product
rule to calculate the derivative p′ = Eq′ + q, we obtain

(5.16) α =
Ep′ − p

p′E2
=

q′

p′
.

This allows us to prove the following result.

Theorem 5.4.2. For a nonnegative polynomial p(x) with positive root λ0,
the error in Newton’s method started at any x > λ0 obeys

Ê < E2 p′′(λ0)
2 p′(λ0)

.

Proof. Since E(λ0) = 0 gives p′′(λ0) = 2q′(λ0), the result follows from
(5.16) if we can show that α(x) is decreasing for x ≥ λ0. For this we prove
that α′(x) is nonpositive for all x > λ0, which is equivalent to

(5.17) p′q′′ − p′′q′ = T1q
′′ − p′′T2 ≤ 0 ,

where
T1 = p′ − x

k − 1
p′′ ; T2 = q′ − x

k − 1
q′′.

Recalling that q(x) =
∑k−1

i=0 Hix
k−1−i, where H0 = 1, H1, . . . , Hk−1 are the

positive numbers given by the Horner sequence applied to the evaluation of
p(λ0), we see that q′′(x) is positive for x > λ0. Since p′(x) is a nonnegative
polynomial whose dominant root must be less than λ0, its derivative must
also be positive for all x > λ0. We complete the proof by showing that
T1(x) < 0 and T2(x) > 0 for x > λ0. To do this, we note that each
of these polynomials has the form f ′(x) − x

d−1f ′′(x) for some polynomial
f(x) =

∑d
j=0 ajx

d−j , and

f ′(x) − x

d − 1
f ′′(x)

=
d−1∑
j=0

(d − j)ajx
d−1−j − x

d − 1

d−1∑
j=0

(d − j)(d − 1 − j)ajx
d−2−j

=
d−1∑
j=1

(d − j)ajx
d−1−j

(
1 − d − 1 − j

d − 1

)

=
d−1∑
j=1

(d − j)ajx
d−1−j j

d − 1
.

This identity says that T1(x) < 0 and T2(x) > 0 for all positive x, and
(5.17) is satisfied for all x > λ0.

5.4 Calculation of the Roots 123

This result is helpful because it says that the sequence of errors satisfies
Ei < α(λ0)−(2i+1) after i steps if initially E0 < 1/α(λ0)2. The difficulty is
that we don’t know how long it takes for Newton’s Method to reduce the
error to less than 1/α(λ0)2.

Until now we’ve considered only absolute error, that is, the difference (or
deviation) of our estimate from the actual value. Often, comparing the size
of the actual error with the size of λ0 is more appropriate, and that’s what
is meant by the relative error, δ(x) = E(x)/λ0. Rephrasing the above
result in terms of relative error, we have

δ̂(x) =
Ê(x)
λ0

=
(δλ0)2α(x)

λ0
< δ2 λ0p

′′(λ0)
2 p′(λ0)

.

The homogeneity of the convergence factor associated with the relative
error criterion yields the following theorem.

Theorem 5.4.3. The relative error in Newton’s method for approximating
the dominant root of a kth degree nonnegative polynomial obeys

δ̂ < (k − 1)δ2 .

In fact, the convergence factor λ0p
′(λ0)/2p′′(λ0) is guaranteed to lie in the

interval [(k − 1)/2, k − 1).

Proof. Following the proof of Theorem 5.4.2, we note that for any polyno-
mial f(x) =

∑k−1
i=0 aix

k−1−i of degree k − 1 we have

(5.18) (k − 1)f(x) − xf ′(x) =
k−1∑
i=1

aiix
k−1−i .

Using this identity for f(x) = p′(x) = kxk−1 − c1(k − 1)xk−2 − · · · − ck−1,
we see that no coefficient in the polynomial (k−1)p′(x)−xp′′(x) is positive,
and x = λ0 gives the lower bound of (k − 1)/2 for the convergence factor.

From p′(λ0) = q(λ0) and p′′(λ0) = 2q′(λ0) we get another representation
of the convergence factor that is not computationally helpful unless the
quotient q(x) can be determined. However, this representation can be used
to successfully obtain the upper bound we want to prove here, namely that

λ0q
′(λ0) < (k − 1)q(λ0) .

Recalling that

q(λ0) = λk−1
0 + H1λ

k−2
0 + · · · + Hk−1 ,

where each Horner element Hi is positive, (5.18) with f(x) = q(x) gives
the required upper bound.

124 5. Nonnegative Difference Equations

This result gives doubling convergence for quadratic polynomials. It can
be extended to polynomials of any degree.

Corollary 5.4.4. Let δ0 be the initial relative error when Newton’s method
is used to approximate the dominant root of a kth degree nonnegative poly-
nomial. If δ0 satisfies δ0 < 1/k, then the number of correct digits doubles
at each iteration when the computation is done in base b = k/(k − 1).

Proof. From the theorem, δi+1 < (k − 1)δi and

δ1 < (k − 1)/k2, δ2 <
(k − 1)3

k4
, . . . , δr <

(k − 1)2
r−1

k2r .

It remains to locate an initial value for which the relative error is suffi-
ciently small. For this we consider the notion of “scaling”. In this context,
scaling means replacing x by a new variable y of the form x = βy. The
standard example is approximating a square root. (Refer to Section 9.4.4
for an analysis of the run time when Newton’s method is used to calculate
a square root.) The square root of A > 0 can be computed using Newton’s
method, since it is the dominant root λ0 of p(x) = x2 − A. The Newton
iteration formula is

N(x) = x − x2 − A

2x
,

or the computationally better

N(x) =
x

2
+

A

2x
.

We scale the expression x2−A by replacing x by x = 2ly, where A lies inside
the interval 4l−1 ≤ A < 4l (such l might be negative). Then x2 − A = 0
iff y2 − A

4l = 0. Once we scale, the root µ0 =
√

A/2l of h(y) = y2 − A/4l

satisfies 1/2 < µ0 < 1, and when y = 1 is chosen as the initial value, we
have E0 < 1/2. In this example, the convergence factor for the relative
error is

µ0h
′′(µ0)

h′(µ0)
= 1,

from which we obtain doubling convergence. Hence, the number of correct
bits when Newton’s Method is used to find µ0 at least doubles at each
iteration, and E < 1/2r implies Ê < 1/22r. After the root µ0 has been
determined with desired accuracy, the root λ0 is easily obtained by multi-
plying by 2l, a binary shift. Scaling helped to identify a good initial value for
the Newton iteration, and information about the scaled polynomial easily
translates back to information about the original polynomial.

5.5 Asymptotic Size of Solutions 125

In general, if p(x) = xk −
∑k

i=1 cix
k−i is a nonnegative polynomial with

dominant root λ0, scaling it by β yields the new polynomial

h(y) = β−k
(
(βy)k −

k∑
i=1

ci(βy)k−i
)

= yk −
k∑

i=1

β−iciy
k−i,

with dominant root µ0 = λ0/β. It can be checked that the relative conver-
gence factor remains unchanged, that is,

λ0p
′′(λ0)/p′(λ0) = µ0h

′′(µ0)/h′(µ0) .

How is this used? First, if it happens that
∑

ci > 1, we repeatedly scale
by a factor of β = k/(k − 1) until the coefficient sum either equals 1 (in
which case the dominant root equals 1) or is less than 1. The last scaling
places the scaled root µ0 in the interval ((k − 1)/k, 1). If it happens that
µ0 lies in the subinterval ((k − 1)/k, k/(k + 1)) of length 1/k(k + 1), then
δ0 < 1/(k2−1) < 1/k holds for the initial value U0 = k/(k+1). Otherwise,
when µ0 ∈ (k/(k + 1), 1), the usual U0 = 1 gives δ0 < 1/(k + 1). In
either case, we’ve identified an initial value for which the relative error
satisfies δ0 < 1/k and doubling convergence is ensured. Once the correct
degree of accuracy is attained for µ0, we scale back to λ0 by a shift in base
β = k/(k − 1). Since our scaled values are less than 1, the relative error
is an upper bound on the absolute error, and the number of correct digits
really does double at each iteration.

5.5 Asymptotic Size of Solutions

5.5.1 Homogeneous nonnegative recurrences

In this section we consider the asymptotic size of solutions to homogeneous
nonnegative recurrences that can be written in the form

(HNN) sn = c1sn−1 +c2sn−2 + · · ·+cksn−k where all ci ≥ 0 and ck = 0 .

Since the characteristic polynomial is a nonnegative polynomial, the results
of Section 5.1 can be applied, and we let λ0 be the dominant eigenvalue
of the recurrence. Keep in mind that we’re also assuming that the initial
conditions are nonnegative.

Theorem 5.5.1. Let λ0 be the dominant eigenvalue of the homogeneous
nonnegative recurrence (HNN). If the initial conditions are nonnegative,
then sn = O(λn

0). If in addition there are k consecutive positive elements
in 〈sn〉 , then sn = Θ(λn

0).

Proof. For any natural number N we define the finite set of real numbers

SN = {si/λi
0 : N ≤ i < N + k},

126 5. Nonnegative Difference Equations

and set αN = min(SN), βN = max(SN). Then

(5.19) αNλi
0 ≤ si ≤ βNλi

0 for all N ≤ i < N + k

and we prove that

(5.20) sn ≤ β0λ
n
0 for all n ≥ 0

by induction on n. By construction, (5.20) holds for all 0 ≤ n < k. If (5.20)
holds for all 0 ≤ n < K, then

sK =
k∑

i=1

cisK−i ≤ β0

k∑
i=1

ciλ
K−i
0 = β0λ

K
0 ,

since
∑k

i=1 ciλ
K−i
0 = λK

0 . Therefore, sK ≤ β0λ
K
0 , and we’ve proved (5.20),

and so sn = O(λn
0). We can obtain sn ≥ α0λ

n
0 by a similar argument,

but α0 might be zero. When there are k consecutive positive values, say
sN , . . . , sN+k−1, then αN is positive, and beginning the above argument at
n = N instead of n = 0 gives

sN+k =
k−1∑
i=0

cisN+i ≥ αN

k−1∑
i=0

ciλ
N+i
0 = αNλN+k

0 .

By induction, sn ≥ αNλn
0 for all n ≥ N , and so sn = Θ(λn

0).

For example, the Fibonacci recurrence is a homogeneous nonnegative
recurrence in which all terms after the first are positive, and this result
says that fn = Θ(λn

0), where λ0 = 1+
√

5
2 is the unique positive eigenvalue.

Another simple example is

sn = sn−1 + 2sn−2 with s0 = 1, s1 = 2.

Since both initial conditions are positive and ch(x) = x2 − x − 2 =
(x + 1)(x − 2), the solution is Θ(2n). In Exercise 5.3 you consider this
recurrence under various choices of initial conditions, including when some
initial conditions are negative.

Corollary 5.5.2. Let 〈sn〉 be the solution to a homogeneous nonnegative
recurrence with nonnegative initial conditions, not all of which are zero. If
the characteristic polynomial is primitive, then 〈sn〉 is eventually positive
and sn = Θ(λn

0).

Proof. It suffices to prove that the sequence is eventually positive. Let sn =
c1sn−1+· · ·+cksn−k. We may assume that s0 > 0. Setting G = {i : ci > 0 },
then s0 > 0 implies si > 0 for all i ∈ G, and so also sj > 0 for all j that
are nonnegative sums of elements in G. By primitivity, gcd(G) = 1, and
this in turn means that every sufficiently large integer can be expressed as
a nonnegative sum of elements of G. (Refer to Exercise 5.5.)

5.5 Asymptotic Size of Solutions 127

What about periodic recurrences? An simple example is

sn = 4sn−2 ,

which has g = 2, periodic characteristic polynomial ch(x) = x2 − 4, and
dominant root λ0 = 2. With initial conditions s0 = 1 = s1, the solution is

sn = 4	n/2
 ,

and sn = Θ(2n) = Θ(λn
0). However, for the initial conditions s0 = 1, s1 = 0,

the solution is

sn =

{
4n/2 when n is even ,

0 when n is odd ,

and sn = O(2n). But sn = Θ(λn
0), since every odd position in the sequence

is zero.
In general, a periodic recurrence whose index of imprimitivity is g = 1

can be expressed as a system of g primitive equations because

sn = cgsn−g + c2gsn−2g + · · · + crgsn−rg

can be written as a primitive system; namely,

t(0)n = cgt
(0)
n−1 + c2gt

(0)
n−2 + · · · + crgt

(0)
n−r

t(1)n = cgt
(1)
n−1 + c2gt

(1)
n−2 + · · · + crgt

(1)
n−r

...

t(g−1)
n = cgt

(g−1)
n−1 + c2gt

(g−1)
n−2 + · · · + crgt

(g−1)
n−r

where the initial conditions for each 〈t(j)n 〉 are the set of original initial
conditions whose subscripts are congruent to j (mod g). If all initial con-
ditions for a particular j are zero, the sequence 〈t(j)n 〉 is the zero sequence.
Otherwise, at least one initial condition for 〈t(j)n 〉 is positive, and by the
corollary, t

(j)
n = Θ(λng

0). Translating this back to the original sequence 〈sn〉
, we see that for a fixed j the subsequence whose subscripts satisfy the
arithmetic progression n ≡ j (mod g) either is the zero sequence or grows
like λn

0 . In some sense we can therefore regard 〈sn〉 as a periodic sequence
with period g, or under some special circumstances the period of 〈sn〉 may
be a divisor of g.

5.5.2 Nonhomogeneous nonnegative equations

Here we look at certain nonhomogeneous nonnegative equations with one
of three types of non-zero input functions.

128 5. Nonnegative Difference Equations

Theorem 5.5.3. Consider a nonnegative difference equation

(5.21) sn = c1sn−1 + c2sn−2 + · · · + cksn−k + g(n) ,

where g(n) is nonnegative for each natural number n. Let λ0 be the dom-
inant eigenvalue of the recurrence. If sn > 0 for all sufficiently large n,
then

• sn = Θ(λn
0) if g(n) = O(λn

1) for some positive λ1 < λ0;

• sn = Θ(g(n)) if g(n) = Θ(λn
2) for some λ2 > λ0;

• sn = Θ(nd+1λn
0) if g(n) = f(n)λn

0 for a polynomial f with deg(f) = d.

These three types of nonnegative forcing functions correspond to the
situations in which g(n) is much less than λn

0 , much greater than λn
0 , and

equal to λn
0 times a polynomial in n. For the last two types of forcing

functions the hypothesis requiring sn to be eventually positive is of course
superfluous. In the first type, the required eventual positivity follows if
there are k consecutive positive terms, which can result from positive initial
conditions or positive g(n) or some combination of these forms of positivity.

Notice that the solutions asymptotically behave about as one expects,
except that the behavior in the third case may be a little unexpected. In
that case, the response to forcing by a polynomial times λn

0 results in a
polynomial of one higher degree times λn

0 . The most common occurrence
of this is with g(n) = λn

0 , and we emphasize this special case because it
arises so often in practice.

Corollary 5.5.4. For any positive constant b, any nonnegative difference
equation of the form

sn = c1sn−1 + c2sn−2 + · · · + cksn−k + bλn
0

has solution sn = Θ(nλn
0), where λ0 is the dominant eigenvalue.

The remainder of this section is occupied with proving the theorem. The
proof is a good example of the technical arguments that are often involved
in asymptotic analysis.

Proof of the Theorem. Let N be such that sn = 0 for all n ≥ N . Similarly
to what was done for the homogeneous case, for any positive λ we define

Sλ = {si/λi : N ≤ i < N + k},

and set αλ = min(Sλ), βλ = max(Sλ). (Notice that αλ and βλ are functions
of λ.) In particular,

(5.22) αλλi ≤ si ≤ βλλi for all N ≤ i < N + k.

5.5 Asymptotic Size of Solutions 129

Case A. g(n) = O(λn
1) for some positive λ1 < λ0. Setting α0 = αλ0 and

β0 = βλ0 ,
α0λ

n
0 ≤ sn ≤ β0λ

n
0 for all N ≤ n < N + k.

As in the proof of the homogeneous case, if sn ≥ α0λ
n
0 for all N ≤ n < K,

then

sK =
k∑

i=1

cisK−i + g(n) ≥ α0

k∑
i=1

ciλ
K−i
0 = α0λ

K
0 ,

since g(K) ≥ 0 and ch(λ0) = 0. Therefore, by induction we have that
sn ≥ αλn

0 for all n ≥ N .
Since g(n) = O(λn

1), there exist positive C, N1 such that 0 ≤ g(n) < Cλn
1

for all n ≥ N1, and we can increase C if necessary (when N < N1) to obtain

0 ≤ g(n) < Cλn
1 for all n ≥ N.

From the fact that λ1 < λ0, then −Cλk
1/ch(λ1) is a positive constant, which

we call γ1. (Recall Exercise 5.2.) Setting β1 = β0 + γ1, we’ll prove that

sn ≤ β1λ
n
0 − γ1λ

n
1 for all n ≥ N

by induction on n and thereby obtain sn = Θ(λn
0). For this, we note that

β1λ
n
0 − γ1λ

n
1 = β0λ

n
0 + γ1(λn

0 − λn
1) > β0λ

n
0 ≥ sn for all N ≤ n < N + k.

Suppose we’ve shown that sn ≤ β1λ
n
0 − γ1λ

n
1 for all N ≤ n < K. Then

sK =
k∑

i=1

cisK−i + g(K)

≤
k∑

i=1

ci(β1λ
K−i
0 − γ1λ

K−i
1) + CλK

1

= β1λ
K−k
0

k∑
i=1

ciλ
k−i
0 − γ1λ

K−k
1

k∑
i=1

ciλ
k−i
1 + CλK

1

= β1λ
K
0 + γ1λ

K−k
1 (ch(λ1) − λk

1) + CλK
1

= β1λ
K
0 − γ1λ

K
1 + λK−k

1 (γ1 ch(λ1) + C λk
1)

= β1λ
K
0 − γ1λ

K
1 ,

by construction of γ1. Then sn = Θ(λn
0) does hold.

Case B. g(n) = Θ(λn
2) for λ2 > λ0. Let α, β > 0 be such that

αλn
2 < g(n) < βλn

2 , for all n ≥ N1.

For n ≥ N1,

sn =
k∑

i=1

cisn−i + g(n) ≥ g(n) ≥ αλn
2 ,

130 5. Nonnegative Difference Equations

giving a lower bound on sn. For an upper bound on sn, from (5.22) with
λ = λ2 we obtain β2 such that

(5.23) sn ≤ β2λ
n
2 for all N ≤ n < N + k.

Increase β2 if necessary to obtain β2 ≥ λk
2β/ch(λ2), which is positive be-

cause λ2 > λ0. Recalling (5.23), we assume sn ≤ β2λ
n
2 for all N ≤ n < M

and prove that this also holds for n = M , since

sM =
k∑

i=1

cisM−i + g(M)

≤
k∑

i=1

ciβ2λ
M−i
2 + βλM

2

= β2λ
M−k
2

k∑
i=1

ciλ
k−i
2 + βλM

2

= β2λ
M−k
2 (λk

2 − ch(λ2)) + βλM
2

= β2λ
M
2 + λM−k

2 (βλk
2 − β2 ch(λ2)) ≤ β2λ

M
2 ,

from the choice of β2. Therefore, for all n ≥ N we have

αλn
2 ≤ sn ≤ βλn

2 ,

and we’ve proved that sn = Θ(λn
2).

Case C. g(n) = λn
0 f(n). For this case we divide the recurrence in (5.21)

by λn
0 to get

sn

λn
0

=
k∑

i=1

ci

λi
0

sn−i

λn−i
0

+ f(n) .

Defining tn = sn/λn
0 and bi = ci/λi

0, this becomes the new recurrence

tn =
k∑

i=1

bitn−i + f(n) ,

where we note that

k∑
i=1

bi =
k∑

i=1

ci

λi
0

=
1
λk

0

k∑
i=1

ciλ
k−i
0 = 1,

since λk
0 =

∑k
i=1 ciλ

k−i
0 . Because sn = tnλn

0 , it suffices to prove tn = Θ(nd+1).
Since f(n) = Θ(nd), there exist constants γ1, γ2 and positive integer N

such that γ1n
d ≤ f(n) ≤ γ2n

d for all n ≥ N . Define S = {tn/nd+1 : N ≤
n < N +k} and let α > 0 be the minimal element of S∪{γ1/(k+1)d+1} and

5.5 Asymptotic Size of Solutions 131

β the maximal element of S ∪ {γ2}. We’ll prove that αnd+1 ≤ tn ≤ βnd+1

by induction on n, which by the construction of α and β holds for all
N ≤ n < N + k. Assuming αnd+1 ≤ tn ≤ βnd+1 for all n < K, we prove
that this inequality also holds for n = K. Then

k∑
i=1

biα(K − i)d+1 + γ1K
d ≤ tK =

k∑
i=1

bitK−i + f(K)

≤
k∑

i=1

biβ(K − i)d+1 + γ2K
d ,

where K − k ≤ K − i ≤ K − 1 and
∑k

i=1 bi = 1 give

α(K − k)d+1 + γ1K
d ≤ tK ≤ β(K − 1)d+1 + γ2K

d .

Therefore, the choice of γ2 ≤ β implies

tK ≤ βKd(K − 1 + 1) = βKd+1 ,

and α ≤ γ1/(k + 1)d+1 gives

tK ≥ α((K − k)d+1 + (k + 1)d+1Kd)) ≥ αKd+1

by Exercise 5.18.

There are many variations of the results in Theorem 5.5.3. Because they
can be proved in essentially the same way as the results given in the theo-
rem, we simply state them here and leave their proofs as exercises.

• If g(n) = O(λn
1) for λ1 < λ0, then sn = O(λn

0).

(a) If the difference equation is primitive and g(n) = O(λn
1) for

λ1 < λ0, then sn = Θ(λn
0).

(b) If sn > 0 for k consecutive values of n and g(n) = O(λn
1) for

λ1 < λ0, then sn = Θ(λn
0).

• Let G(n) = max{g(n), λ2g(n−1), . . . , λn−1
2 g(1)}. If g(n) = Ω(λn

2) for
λ2 > λ0, then:

(a) sn = Ω(λn
2).

(b) sn = Ω(g(n)).
(c) sn = O(G(n)) .
(d) If G(n) = O(g(n)), then sn = Θ(g(n)).
(e) If g(n) = Ω(G(n)), then sn = Θ(G(n)).

• If g(n) = h(n)λn
0 for some nonnegative h(n), then sn = O(ng(n)) and

sn = Ω(g(n)).

• If g(n) = h(n)λn
0 for some nonnegative h(n) that is nondecreasing,

then sn = Θ(
∑n

j=1 λn−j
0 g(j)).

132 5. Nonnegative Difference Equations

5.6 Exercises

Ex 5.1. Let p(x) be a polynomial, and let λ be a root of p(x) whose
multiplicity is m ≥ 2. Show that λ is a root of p′(x) with multiplicity
m − 1.

Ex 5.2. Show that if p(x) is a nonnegative polynomial with positive root
λ0, then the values of p(x) change from negative to positive at x = λ0.
From this conclude that for x > 0,

ch(x) > 0 ⇐⇒ x > λ0

by showing that p′(x) is positive for all x > λ0.

Ex 5.3. Consider the recurrence sn = sn−1 + 2sn−2.
(a) Show that sn = Θ(2n) for s0 = 0, s1 = 15.
(b) When s0 = −4 and s1 = 7, show that sn > 0 for all n ≥ 3, and

sn = Θ(2n) still holds.
(c) When s0 = −1, s1 = 1, show that sn = Θ(2n).

Ex 5.4. In this problem we consider the kth order Fibonacci recurrence

fn = fn−1 + fn−2 + · · · + fn−k

with primitive characteristic polynomial and dominant root λ0.
(a) Use Newton’s Method initialized at x0 = 2 to show that λ0 ≤ 2 −

1/(2k − 1).
(b) Show that λ0 ≥ 2 − 2/(k + 1)
(c) (HARDER) Show that λ0 > 2 − 2/2k .

Ex 5.5. Let a and b be fixed positive integers.
(a) Show that an integer n is expressible as a nonnegative combination

of a and b (that is, there exist nonnegative integers i, j such that
n = ia + jb) iff n is in one of the following sequences:

0, b, 2b, . . . ,

a, b + a, 2b + a, . . . ,

2a, b + 2a, 2b + 2a, . . . ,

. . .

(b − 1)a, b + (b − 1)a, 2b + (b − 1)a,

(b) When gcd(a, b) = 1, show that each of the above sequences is in
a different congruence class modulo b. Use this to show that every
integer n greater than (a− 1)(b− 1) is in one of these sequences and
so can be written as a nonnegative combination of a and b.

(c) If G is any finite set of positive integers with gcd(G) = 1, show that
every sufficiently large integer can be written as a nonnegative sum
of elements in G.

5.6 Exercises 133

Ex 5.6. Let G be a finite set of positive integers and let g = gcd(G) be
the greatest common divisor (gcd) of the elements of G. Then ζ is an
ith root of unity for every i ∈ G iff ζ is a gth root of unity.

Ex 5.7. Show that
(a) p(x) = (x − 3)(x + 1)3 is a primitive nonnegative polynomial;
(b) p(x) = x4 − x3 − 5x2 − x − 6 is a primitive nonnegative polynomial

with two roots on the unit circle.

Ex 5.8. Consider

p(x) = x5 − 1
2
x3 − 9

2
x2 − 55

16
x − 25

8
.

Show that λ0 = 2 is the unique positive root of p(x) and that there exists
a quadratic polynomial q(x) such that p(x) = (x − 2)(q(x))2, where every
root λ of q(x) satisfies |λ| =

√
5/2. With this you see that even a primitive

nonnegative polynomial can have subdominant eigenvalues that are not
simple.

Ex 5.9. If
∑k

i=1 |bi| ≤ 1, show that every solution to

yn = b1yn−1 + · · · + bkyn−k

satisfies |yn| ≤ max{|y0|, |y1|, . . . , |yk−1|}.

Ex 5.10. In this problem we consider

sn = 2sn−1 + 2sn−2 + 3sn−3.

Use the method of Exercise 4.22 to show that the coefficient of the dominant
eigenvalue in the closed form of the solution is α = (s0 + s1 + s2)/13.

Ex 5.11. Show that the sequence of deviations is periodic for the solution
to sn = 2sn−1 + 2sn−2 + 3sn−3 with s0 = 0, s1 = 3, s2 = 9.

Ex 5.12. Show that the nonnegative solutions to

xn = 5xn−1 + 4xn−2

converge to αλn
0 in the absolute value sense. If the initial conditions are

nonnegative integers, will xn = Round(αλn
0)?

Ex 5.13. Let p(x) = xk + c1x
k−1 + · · ·+ ck−1x + ck be a polynomial with

integer coefficients.
(a) Show that any real root of p(x) is either an integer or is an irrational

number.
(b) Give an efficient algorithm to determine whether or not the domi-

nant root of a nonnegative polynomial with integer coefficients is an
integer.

134 5. Nonnegative Difference Equations

Ex 5.14. Let p(x) be a monic nonnegative polynomial with dominant root
λ0. Show that each Hi generated by Horner’s Method in the evaluation of
p(x) at λ0 is positive.

Ex 5.15. Show that the polynomial f(x) = x3 + 3x2 − 13x + 17 has one
real root and it is negative. Try various positive initial conditions to see
if Newton’s method converges to the root. Conclude from this that the
assumption of nonnegativity is needed to ensure that any initialization of
Newton’s method above the root will converge to the root.

Ex 5.16. Show that there exists an initial value such that Newton’s Method
applied to f(x) = x3 + 3x2 − 13x + 17 oscillates with period 3.

Ex 5.17. Show that applying Newton’s Method to the Fibonacci polyno-
mial x2 − x − 1 with initial condition 2 produces the sequence 〈f2j+1/f2j〉
converging to the dominant root (1 +

√
5)/2.

Ex 5.18. Write nd+1 as [(n − k) + k]d+1 and use the binomial expansions
of this and of (k + 1)d+1 to show that

(n − k)d+1 ≥ nd+1 − (k + 1)d+1nd .

Ex 5.19. Find the asymptotic size of solutions to

sn = 2sn−1 + 2sn−2 + 3sn−3 + g(n)

with nonnegative initial conditions for each of the following choices of g(n):

g(n) = 2n ; g(n) = 4n ; g(n) = n3n .

Ex 5.20. Find the asymptotic size of the solution to

fn = fn−1 + fn−2 + g(n) f0 = 0, f1 = 1 ,

where g(n) satisfies the recurrence

g(n) = g(n − 1) + g(n − 2) g(0) = 0, g(1) = 1 .

Ex 5.21. Let 〈sn〉 be the solution to a nonnegative recurrence

sn = c1sn−1 + c2sn−2 + · · · + cksn−k + g(n) .

Show that:
(a) If g(n) = O(λn

1) for λ1 < λ0, then sn = O(λn
0).

(b) If the recurrence is primitive and g(n) = O(λn
1) for λ1 < λ0, then

sn = Θ(λn
0).

(c) If sn > 0 for k consecutive values of n and g(n) = O(λn
1) for λ1 < λ0,

then sn = Θ(λn
0).

5.6 Exercises 135

Ex 5.22. Let 〈sn〉 be a solution of the nonnegative recurrence

sn = c1sn−1 + c2sn−2 + · · · + cksn−k + g(n) .

Let G(n) = max{g(n), λ2g(n− 1), . . . , λn−1
2 g(1)}. If g(n) = Ω(λn

2) for λ2 >
λ0, show that:

(a) sn = Ω(λn
2).

(b) sn = Ω(g(n)).
(c) sn = O(G(n)) .
(d) If G(n) = O(g(n)), then sn = Θ(g(n)).
(e) If g(n) = Ω(G(n)), then sn = Θ(G(n)).

Ex 5.23. Let 〈sn〉 be a solution of the nonnegative recurrence

sn = c1sn−1 + c2sn−2 + · · · + cksn−k + g(n) .

Show that:
(a) If g(n) = h(n)λn

0 for some nonnegative h(n), then sn = O(ng(n)) and
sn = Ω(g(n)).

(b) If g(n) = h(n)λn
0 for some nonnegative h(n) that is nondecreasing,

then sn = Θ(
∑n

j=1 λn−j
0 g(j)).

6
Leslie’s Population Matrix Model

6.1 Leslie’s Model

In the Fibonacci story (see Chapter 1) the rabbits are immortal, but with
a few exceptions, like the Energizer Bunny, we know that real rabbits have
small finite lifetimes. We can make this model more reasonable by reinter-
preting the meaning of the age classes while still maintaining the mathe-
matical form of the model. Recalling the original model, if At is the number
of adult pairs at time t, and Yt is the number of young (not yet breeding)
pairs at time t, then (

At+1

Yt+1

)
=

[
1 1
1 0

](
At

Yt

)
.

The assumed immortality of the adults is represented by the 1 in the upper
left entry of the matrix. The young disappear by becoming adults, but they
are replaced by each adult pair producing a new young pair. What happens
if we simply interchange adults and young, leaving the matrix alone? We
get (

Yt+1

At+1

)
=

[
1 1
1 0

](
Yt

At

)
,

but our interpretation is now quite different. New young are produced by
both young and adults. The adults disappear, but they are replaced by
youths who grow into adulthood. So by reinterpreting this model we can
replace the unrealistic assumption of immortality with the biologically re-
alistic assumptions of aging and death. As a leading biologist said at a

138 6. Leslie’s Population Matrix Model

recent meeting, “The facts are always changing, but a good model goes on
forever.”

The reinterpreted model still has some unrealistic features. Should every
youth survive to adulthood? Should the number of offspring produced by an
adult pair and a young pair be the same? The model can be generalized to
avoid these unrealistic features by replacing the 1’s in the matrix with other
constants. Since the lower left 1 represents a youth surviving to become an
adult, we could replace this 1 by s, which is called the survival rate, and
reasonably assume that 1 ≥ s > 0. The 1’s in the top row represent the
number of offspring produced by a youth and an adult respectively. We
can replace these 1’s with the fertility rates f1 and f2 and simply assume
that f1 ≥ 0 and f2 ≥ 0. The generalized model is(

Yt+1

At+1

)
=

[
f1 f2

s 0

](
Yt

At

)
.

Several special cases suggest themselves. What happens if f1 = f2 = 0?

Then, if we start with the population
(

Y0

A0

)
, we next get

(
0

sYt

)
and then(

0
0

)
. So as expected, if the fertility rates are 0, the population dies out,

and in this model the population dies out in two time steps. What happens

if f2 = 0, but f1 = 0? Then starting with
(

Yt

At

)
, we get

(
f1Yt

sYt

)
and

then
(

Ytf
2
1

Ytsf1

)
. These last two vectors can be rewritten as Yt

(
f1

s

)
and

Ytf1

(
f1

s

)
. Notice that these are both multiples of the vector

(
f1

s

)
, and

that neither depends on At. These observations agree with the expectations
that the individuals past reproductive age eventually have no effect on the
composition of the population, and the eventual shape of the population
depends on the structural parameters f1, f2, and s, and not on the initial

population. What happens if f1 = 0 and f2 = 0? Then, starting with
(

Yt

At

)
,

we get
(

f2At

sYt

)
and then

(
sf2Yt

sf2At

)
. In contrast to the other cases, the shape

of the population oscillates between multiples of
(

Yt

At

)
and

(
f2At

sYt

)
. In the

second and third cases the population may increase or decrease depending
on whether the multiplier, f1 or sf2, is or is not larger than 1. These
cases show that this simple model does have some features that we want
in a population model. The population size may increase or decrease. The
population may die out. The shape of the population may approach a stable
form, or the shape of the population may oscillate. By doing some simple
calculations on the parameters, we would like to be able to determine which
of these various situations occurs.

6.1 Leslie’s Model 139

We can generalize the Fibonacci model with two age classes to a model
with k age classes. In population biology the model with k age classes
is usually called Leslie’s model. In 1945, Leslie [95] published one of
the most influential papers in population biology. In it he introduced a
generation of biologists to vectors and matrices. The model Leslie described
is quite similar to the renewal model [62] and the method of life tables,
which were devised in the 1700’s by such mathematicians as the Bernoullis,
Euler, and Halley. (For more on the history, consult Boyer’s History of
Mathematics [12].) These methods form the basis of an entire industry—
insurance. Further, these methods were not unknown to earlier biologists.
For example, Lotka’s 1925 book, Elements of Mathematical Biology [101],
devotes an entire chapter to them. On the other hand, Leslie presented a
concise formulation of the model, and the mid-twentieth century generation
of biologists was a receptive audience.

The model can be concisely stated as

Xt+1 = LXt ,

where Xt and Xt+1 are population vectors and L is a Leslie matrix (which
is explicitly defined below.) The model assumes discrete time, and the time
unit must be chosen appropriately for the organism being modeled. For
bacteria the time unit might be 20 minutes. For many insects an appropri-
ate time unit might be one week. For many vertebrates a one-year time unit
might be used. For human populations a five-year time unit is often used.
The population vectors have a number of components. Each component is
the number of individuals of a particular age. For example, if

Xt = (x1, x2, x3, x4)T ,

then at time t, x1 is the number of individuals in the first age class, x2

is the number of individuals in the second age class, and so forth. Said
another way, xi is the number of individuals of age i−1, because newborns
are usually assigned age 0 and not age 1. If one is not really happy with
the discrete-time assumption and assumes that discrete time is only an
approximation to an underlying continuous time, then one could say that
xi represents the individuals with ages a for which i − 1 ≤ a < i. One
could instead include in xi the ages for which i− 1 < a ≤ i, with newborns
included in x1. Or one could say that ages for which i − 1 ≤ a ≤ i are
represented by xi and claim that there is no ambiguity because there are
no individuals of exactly age i for any i. The main point is that the width
of an age class is one time unit. If the data are arranged for five-year age
classes, this model will not calculate the population even one year in the
future.

140 6. Leslie’s Population Matrix Model

Generalizing from the Fibonacci example, a Leslie matrix contains both
survival rates and fertility rates; specifically,

L =

⎡⎢⎢⎢⎢⎢⎢⎣

f1 f2 fk

s1 0 0

s2

...
. . .

...
sk−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The first row of L consists of fertility rates, where fi is the number of
offspring (newborn) produced by an individual of age class i in one time
unit, and the subdiagonal of L contains the survival rates, where si is the
probability that an individual in age class i will survive to age class i + 1.
All other entries in L are zero.

The usual assumptions on these parameters are that for each i, 0 < si ≤ 1
and fi ≥ 0. The first assumption makes sense if one interprets si as a
probability and assumes that there is some possibility for an individual to
survive a particular age class into the next age class. Further, if any si

were zero, then in k − i steps the population would become a population
in which the last k − i age classes are empty, and all future developments
occur within and depend only on the first i age classes. For similar reasons,
one usually assumes that fk ≥ 0. That is, if one or several of the oldest age
classes have zero fertility, then the composition of these older age classes has
no effect on the rest of the population, and in a small number of steps the
composition of these age classes is determined by the younger age classes
with no effect from the original composition of these oldest age classes.

An extra assumption made in Leslie’s original model and often used in
demographic applications is that at least two adjacent fertility rates are
positive. This assumption is often enforced by averaging fertilities. That
is, the number of offspring from females in each age class is measured, but
a fraction of these are attributed to females in the next age class because
the females are assumed to be aging as the measurements are taken. A
mathematically more appropriate assumption, which includes the Leslie
assumption as a special case, is that there is a power of the Leslie matrix
that is strictly positive. Luckily, this can be checked easily using the greatest
common divisor of the indices of positive fertility rates. Later, we will prove
the following result.

Theorem 6.1.1. Let L be a Leslie matrix. Then there exists m ≥ 0 with
Lm � 0 iff gcd{i | fi > 0} = 1, where A � 0 means that every entry in
the matrix A is strictly positive.

This theorem says that there is a power of L that is a strictly positive
matrix. The following theorem gives bounds on the least exponent m for
which the power Lm is strictly positive.

6.1 Leslie’s Model 141

Theorem 6.1.2. Let L be an n×n Leslie matrix with gcd{i | fi > 0} = 1.
Let m0 be the least nonnegative integer such that Lm0 � 0, and let l be the
least positive integer with fl > 0. Then

m0 ≤ l(n − 2) + n ≤ (n − 1)2 + 1 .

We will prove both of these theorems in Chapter 7 in the more general
context of nonnegative matrices (which might not be in Leslie form.) The
bounds given in Theorem 6.1.2 are tight. For instance, for any n ≥ 2
consider a Leslie matrix in which f1 = f2 = · · · = fn−2 = 0, fn−1 > 0,
and fn > 0. Here, gcd(n, n − 1) = 1, and it is relatively easy to show that
m0 = (n − 1)2 + 1. (See Exercise 6.8.)

These two theorems can be generalized to apply to all nonnegative matri-
ces, but the gcd condition must be generalized. For this we use a graphical
interpretation. A nonnegative matrix A is called primitive if there exists
positive m with Am � 0. A graph G can be associated with A in which
vertices vi and vj have an edge vi ← vj iff aij > 0. (We chose this direc-
tion, but the other ordering, vi → vj , could be used.) A graph is strongly
connected if for each pair of vertices vi and vj there is a directed path
from vi to vj (and so also a directed path from vj to vi.) When the directed
edges are represented by arrows, a directed path always follows the arrows
from tail to head. The generalized theorems are as follows:

Theorem 6.1.3. A nonnegative n×n matrix A is primitive iff the associ-
ated graph G is strongly connected and the greatest common divisor of the
cycle lengths in G is 1.

Theorem 6.1.4. If A is a primitive n × n matrix, then m0, the least
nonnegative integer such that Am0 � 0, obeys

m0 ≤ l(n − 2) + n ≤ (n − 1)2 + 1 ,

where l is the length of the shortest cycle in the associated graph G.

We defer the proofs of these theorems to Chapter 7, where we will also
describe the graph associated with a nonnegative matrix in more detail.

6.1.1 How to tell whether a Leslie matrix is primitive

How does one determine whether a nonnegative matrix has a power that
is strictly positive? For a Leslie matrix, the strong connectedness in Theo-
rem 6.1.3 holds, since all survival rates si are positive. Also, from the form
of Leslie matrices we see that every cycle in the graph contains the vertex
1, which means that the necessary and sufficient condition for primitivity
becomes gcd{i|fi > 0} = 1 for Leslie matrices.

Notice that if Lm is positive, then Lm1 is positive for all m1 > m. So one
way to test whether a Leslie matrix is primitive is to raise the matrix to the

142 6. Leslie’s Population Matrix Model

(n− 1)2 + 1 power and then check whether this matrix is strictly positive.
This technique will require a number of matrix multiplications and hence
may not be very efficient. A more efficient algorithm is based on the gcd
condition, where gcd{i|fi > 0} is computed using the Euclidean greatest
common divisor algorithm. It can be shown (see Exercise 6.2) that the
Euclidean Algorithm computes the gcd of two numbers that are less than n
using O(log n) arithmetic operations. Since the Euclidean Algorithm is used
at most O(n) times, the whole algorithm takes O(n log n). The algorithm
for primitivity is given in the next two boxes.

Recursive Form of the Euclidean Algorithm
for Greatest Common Divisor

gcd(a, b) =

{
b if a = 0,
gcd(b mod a, a) if a = 0 .

Algorithm to determine whether a Leslie Matrix is primitive

Let {i1, i2, . . . , ir} = {i|fi > 0}
G := i1
FOR J := 2 TO r DO

G := gcd(G, iJ)
ENDFOR
IF G = 1 THEN Primitive

ELSE Not Primitive

6.2 Leslie’s Convergence Theorem

The content of Leslie’s Convergence Theorem is that a multi-dimensional
model asymptotically becomes a one-dimensional model. Specifically, the
theorem states that under reasonable circumstances the population distri-
bution will converge to a single distribution regardless of the initial distri-
bution. In general, this convergence is convergence in the sense of relative
error. With an additional assumption, the convergence can become conver-
gence in the sense of absolute error.

The asymptotic growth rate of the population is determined by a single
number, λ0, which depends on the fertility rates and survival rates but is
independent of the initial population distribution. There is no closed-form
formula for λ0, but it can be calculated quickly to high numerical accuracy
using Newton’s method (see Section 5.3).

6.2 Leslie’s Convergence Theorem 143

Will the population be asymptotically increasing or decreasing? Ob-
viously, this depends on λ0, but a highly accurate estimate of λ0 is not
needed to answer this question. All one needs to know is whether λ0 > 1
or λ0 < 1, and this can be determined in O(n) arithmetic operations.

What will the asymptotic distribution, usually called the stable age
distribution, look like? This distribution can be given as an explicit for-
mula in λ0, the fertility rates, and the survival rates. Further, assuming
that λ0 > 1 holds, this stable age distribution has an “inverted pyramid”
form. That is, the largest age class is the newborns, and the size of each
age class decreases as age increases. Here is the theorem.

Theorem 6.2.1 (Leslie’s Convergence Theorem). Let L be an n × n
Leslie matrix in which gcd{i | fi > 0} = 1, and let X be a nonnegative
vector. Then there is a unique positive eigenvalue λ0 of L such that

lim
t→∞

LtX

λt
0

= γ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c1
λ0
...
ci

λi
0
...

cn

λn
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

ci =

{
1 if i = 1,

s1s2 · · · si−1 if i = 2, . . . , n,

and

γ =
n∑

j=1

λj−1
0 gj(λ0)xj

ch′
L(λ0)cj

,

where

chL(λ) = λn −
n∑

i=1

cifiλ
n−i

and

gj(λ) =
n∑

i=j

cifiλ
n−i .

This form of the theorem is slightly stronger than Leslie’s original the-
orem, because he assumed that there was some i such that both fertility
rates fi and fi+1 are positive. Clearly his assumption implies the gcd con-
dition, but there are Leslie matrices that satisfy the gcd condition and do
not have two adjacent positive fertility rates. We will not prove the theorem
now. Rather, it will follow as a corollary to some more general theorems
that we will prove later in this chapter. (See Section 6.6.) The above form
for the limiting vector was chosen to display the inverted pyramid form.

144 6. Leslie’s Population Matrix Model

Corollary 6.2.2. If λ0 > 1 and for each i, either si ≤ 1, or λ0 ≥ 1 and
si < 1, then the limiting vector has the inverted pyramid form in which the
entries of the vector decrease as one goes from top to bottom.

The other important point is that γ > 0 if X > 0. This follows because
ch′

L(λ0) > 0, and for each j both cj and gj(λ0) are positive. (For this, refer
to Exercise 5.2. Also notice that if X = 0, then γ = 0 and LtX is always
0.) The convergence is in the relative error sense, since the theorems on
nonnegative polynomials (Section 5.1) guarantee only that λ0 is greater
than the absolute value of the other eigenvalues. For convergence in the
absolute error sense, one wants λ0 ≥ 1 and that all other eigenvalues satisfy
|λ| < 1. For example, the Fibonacci matrix F satisfies these hypotheses,
and so not only does

lim
t→∞

F tX

λt
0

= γ

(
1/λ0

1/λ2
0

)
= γ̂

(
λ0

1

)
hold, but also there exists a constant γ̂ depending only on X such that

lim
t→∞

∣∣∣F tX − γ̂λt
0

(
λ0

1

) ∣∣∣ = 0 ,

where here the absolute value of a vector means the maximum absolute
value of its coordinates.

6.3 Imprimitive Leslie Matrices

Not all Leslie matrices converge. Some can oscillate. The idea of using oscil-
lating matrices for populations even predates Leslie’s paper. For example,
Bernadelli [8] described a hypothetical population of beetles that he mod-
eled with an oscillating matrix. The periodic cicadas (the famous 17-year
locusts) can also be described by the oscillating matrices that we will cover
in this section.

6.3.1 A simple example

Consider the two-dimensional Leslie matrix

M =
[

0 8
1/2 0

]
.

There is only one positive fertility rate, f2, and so g = 2, and we expect
an oscillation of period 2. The characteristic polynomial is λ2 − 4, and the
eigenvalues are ±2, which gives

M2m = 4mI and M2m+1 = 4mM .

6.3 Imprimitive Leslie Matrices 145

So in some sense the powers of M are periodic. To be more precise, we can
normalize by dividing M by its positive eigenvalue, λ0 = 2, giving

M

2
=

[
0 4

1/4 0

]
,

and clearly, (
M

2

)2m

= I and
(

M

2

)2m+1

=
M

2
,

and thus M
2 is periodic with period 2. In general, we say that a matrix A is

periodic with period p if Ap+i = Ai for all i ≥ 0, and p is the smallest
positive integer that makes the equation true. While in our example it is
true that

(
M
2

)512+i
=

(
M
2

)i
for all i, we do not say that

(
M
2

)
has period

512, because the periodicity equations are also satisfied by p = 2. When we
say that the period p equals 2, we are also implying that A1+i = Ai; that
is, the matrix does not have period 1.

6.3.2 A special case: Only one positive fertility rate

Theorem 6.3.1. Let M be an n-dimensional Leslie matrix with fn its only
non-zero fertility rate. If λ0 is the positive eigenvalue of M , then M/λ0 is
periodic with period n. Also, λ0 = (s1 · · · sn−1fn)1/n.

Proof. By direct calculation, the characteristic polynomial of M is the non-
negative polynomial λn − s1 · · · sn−1fn. So λ0 = (s1 · · · sn−1fn)1/n is the
(unique) positive eigenvalue. By the Cayley–Hamilton Theorem (refer to
Appendix C), Mn = λn

0 I and n satisfies the periodicity equations. To see
that n is the smallest such positive integer, consider the orbit of en un-
der M : en, Men, M2en, . . . , Mn−1en, where e1, e2, . . . , en are the standard
coordinate vectors. For j > 0,

M jen = s1 · · · sj−1fnej ,

implying that the period divides n. Now if M/λ0 were periodic with period
p, then for every vector X , MpX would be a scalar multiple of X . But
no two ej’s are scalar multiples of one another. Therefore, for any p < n,
Mpen is not a scalar multiple of en, so M cannot have period less than
n. (Note that our proof basically shows that for such M the minimal and
characteristic polynomials are equal.)

6.3.3 Asymptotically periodic Leslie matrices

Fortunately or unfortunately, most matrices—even most Leslie matrices—
are not truly periodic. Even imprimitive Leslie matrices are usually not
periodic. (Recall that a matrix is primitive when there is a power of the

146 6. Leslie’s Population Matrix Model

matrix that has only positive entries.) All powers of an imprimitive Leslie
matrix contain some zeros, and these zeros move through the powers of the
matrix in a periodic fashion. The non-zero entries also appear periodically,
but the values of the non-zero entries are changing, preventing true period-
icity. If an n×n imprimitive Leslie matrix has at least two positive fertility
rates, then g is less than n, and the matrix has g eigenvalues of largest
magnitude and n−g eigenvalues of smaller magnitude. These smaller mag-
nitude eigenvalues prevent the matrix from being truly periodic, but we
can expect the contribution from these smaller eigenvalues to disappear
(at least in a ratio sense) as we take higher powers of the matrix.

For example, consider the Leslie matrix

A =

⎡⎢⎢⎣
0 1 0 2

1/2 0 0 0
0 1 0 0
0 0 1/2 0

⎤⎥⎥⎦ ,

with characteristic polynomial λ4 − 1
2λ2 − 1

2 , eigenvalues ±1, ±i/
√

2, and
g = 2. In this example we expect that taking high powers of A leads to a
matrix that is close to a periodic matrix of period 2, and we can use the
characteristic polynomial to display this behavior. Since A4 = 1

2 (A2 + I),

AK+2 − AK = AK−2(A4 − A2) = AK−2(
1
2
A2 +

1
2
I − A2)

= −1
2
AK−2(A2 − I) = −1

2
(AK − AK−2) .

Iterating this formula gives

AK+2 − AK =

{
(− 1

2)K/2 (A2 − I) if K is even ,

(− 1
2)	K/2
 A(A2 − I) if K is odd .

In either case, A2 − I or A(A2 − I) are fixed matrices independent of K.
Since (− 1

2)K/2 is decreasing exponentially to 0,

lim
K→∞

(AK+2 − AK) = 0 ,

where this convergence is componentwise, which means that each entry in
the matrix AK+2−AK goes to 0. (Other notions of convergence are possible
for matrices.)

Using this example as our paradigm, we say that A is an asymptotically
periodic matrix with period g if

lim
K→∞

(AK+g − AK) = 0

and g is the smallest positive integer that satisfies this equation.

6.4 Companion Matrices 147

To show that our example A has asymptotic period 2, we must show
that A cannot have a smaller period. If A had asymptotic period 1, then
for every vector X , we would have

lim
K→∞

(AK+1 − AK)X = 0 .

(The 0 on the right side is a vector, not a matrix.) Consider the vector

X = (4,−2, 2,−1)T .

Calculation shows that AX equals −X . Hence AKX = (−1)KX , and

(AK+1 − AK)X = (−1)K+1X − (−1)KX = 2(−1)K+1X ,

which does not go to zero. This means that A does have asymptotic pe-
riod 2.

6.4 Companion Matrices

To set the stage for our proof of Leslie’s Convergence Theorem we take a
detour through companion matrices. Our intention is to prove convergence
results about matrices and from these to derive convergence results for
vectors. We generalize Leslie’s theorem by considering both primitive and
imprimitive matrices.

Let A be a matrix in companion form; that is,

A =

⎡⎢⎢⎢⎣
c1 c2 . . . cn

1 0 . . . 0
. . .

0 1 0

⎤⎥⎥⎥⎦ ,

where cn = 0. Companion matrices have features in common with Leslie
matrices, and the relationship between these two types of matrices, will be
explained a little later. (See Section 6.6.) Companion matrices are called
companion because they are closely associated with polynomials of the form
λn − ciλ

n−1 − c2λ
n−2 − · · · − cn. This companionship is not just one-way,

since the characteristic polynomial of A is, up to sign, the polynomial to
which A is companion. This last remark can be verified easily by writing

148 6. Leslie’s Population Matrix Model

down the determinant and expanding it via its last column:

chA(λ) = det(A − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 − λ c2 cn

1 −λ

1
. . .
.

1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣

= −λ

∣∣∣∣∣∣∣∣∣∣∣∣

c1 − λ c2 cn−1

1 −λ

1
. . .
.

1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
− (−1)ncn

∣∣∣∣∣∣∣∣∣∣∣∣

1 −λ
1 −λ

.
. . . −λ

1

∣∣∣∣∣∣∣∣∣∣∣∣
= . . .

= −λ(−1)n−1(λn−1 − c1λ
n−2 − · · · − cn−1) − (−1)ncn

= (−1)n[λn − c1λ
n−1 − · · · − cn−1λ − cn] ,

where as usual, the ellipses, . . . , indicate an inductive argument. In what
follows we will blithely ignore the (−1)n, and simply say that chA(λ) =
λn − c1λ

n−1 − · · · − cn. In fact, we will usually drop the subscript A and
just say ch(λ) = λn − c1λ

n−1 − · · · − cn.
The Cayley–Hamilton Theorem (see Appendix C) says that every matrix

satisfies ch(A) = An−c1A
n−1−c2A

n−2−· · ·−cnI = 0, giving a relationship
between a polynomial and its companion matrix. We can use this relation
to compute powers of the matrix A. From the relation

(6.1) An = c1A
n−1 + c2A

n−2 + · · · + cnI ,

so that
An+1 = c1A

n + c2A
n−1 + · · · + cnA ,

and using (6.1), we obtain

An+1 = (c2
1 + c2)An−1 + (c1c2 + c3)An−2 + · · ·

+ (c1cn−1 + cn)A + c1cnI .

Extending this example, all powers of A can be expressed as linear com-
binations of the 0th through n − 1st power of A. For any k there are coef-
ficients α1(k), . . . , αn(k) such that

Ak = α1(k)An−1 + α2(k)An−2 + · · · + αn(k)I .

This formula says that the problem of computing the powers of a matrix
can be reduced to computing n scalar functions. Further, the formulas for

6.4 Companion Matrices 149

computing these functions have the following simple form:

α1(k + 1) = c1 · α1(k) + α2(k) ,

α2(k + 1) = c2 · α1(k) + α3(k) ,

...
αn−1(k + 1) = cn−1 · α1(k) + αn(k) ,

αn(k + 1) = cn · α1(k) .

This is a system of n coupled difference equations, which can be separated
by converting to an nth order difference equation, for example,

α1(k + 1) = c1α1(k) + c2α1(k − 1) + · · · + cnα1(k − n + 1) .

If one knew the solution to this difference equation, then the other scalar
functions could be computed by

α2(k + 1) = c2α1(k) + c3α1(k − 1) + · · · + cnα1(k − n + 2) ,

...
αn(k + 1) = cnα1(k) .

If one desired, these could also be replaced by n uncoupled difference equa-
tions

α1(k + 1) = c1α1(k) + c2α1(k − 1) + · · · + cnα1(k − n + 1) ,

α2(k + 1) = c1α2(k) + c2α2(k − 1) + · · · + cnα2(k − n + 1) ,

...
αn(k + 1) = c1αn(k) + c2αn(k − 1) + · · · + cnαn(k − n + 1) .

Notice that these are really the same difference equation, but each copy of
the equation has, in general, a different solution because the initial condi-
tions are different for each copy.

Although the above formulas give computationally efficient methods to
compute powers of a matrix, we want a single method that gives a good
estimate of the asymptotic behavior of the sequence of powers. What does
Ak look like when k is large? In general, the answer is easy. Either all
the entries in Ak are large—that is, grow exponentially in magnitude as a
function of k—or all entries of Ak are small—that is, decrease exponentially
in magnitude as a function of k. Of course, there are A’s that are exceptions
to this general case. In fact, we would like to change A so that the overall
growth or decline trend is normalized out, and then see how Ak behaves.
To do so we assume that there is a single number λ0 that is the largest
number (in magnitude) such that A − λ0I is singular and then study the

150 6. Leslie’s Population Matrix Model

behavior of (A/λ0)k. We expect the growth trend to be normalized out, so
that (A/λ0)k has a limit, and we want to compute this limit. It is important
to determine or at least estimate λ0, and we return to this estimation later.

First, let us look for an eigenmatrix Pλ whose form is preserved but
whose magnitude is multiplied by λ when Pλ is multiplied by A. That is,
we want to solve the equation

(6.2) APλ = λPλ .

Since we are interested in computing powers of A, we assume that Pλ can
be represented as a polynomial in A. Assuming

Pλ = p0A
n−1 + p1A

n−2 + · · · + pn−1I ,

then

λPλ = APλ = p0A
n + p1A

n−1 + · · · + pn−1A

= (p0c1 + p1)An−1 + (p0c2 + p2)An−2 + · · ·(6.3)
+ (p0cn−1 + pn−1)A + p0cnI .

Equating the coefficients of corresponding powers of A on each side of (6.3)
gives

p0cn = pn−1λ ,

p0cn−1 + pn−1 = pn−2λ ,

...
p0c2 + p2 = p1λ ,

p0c1 + p1 = p0λ .(6.4)

Assuming λ = 0, these equations can be solved as

pn−1 =
p0cn

λ
,

pn−2 =
p0cn−1

λ
+

pn−1

λ
= p0

(cn−1

λ
+

cn

λ2

)
(6.5)

...
... ,

p1 =
p0c2

λ
+

p2

λ
= p0

(c2

λ
+

c3

λ2
+ · · · + cn

λn−1

)
.

The last equation and (6.4) give

p0c1 + p1 = p0

(
c1 +

c2

λ
+ · · · + cn

λn−1

)
= p0λ .

This is a valid equation for all values of p0 if λn = c1λ
n−1 + · · ·+ cn, which

is true for every λ that is a root of the characteristic polynomial. Of course,

6.4 Companion Matrices 151

if λ is not a root of the characteristic polynomial, then this last equation
implies that p0 = 0, and hence by (6.5) that pi = 0 for all i.

The eigenmatrices Pλ can also be expressed in terms of the values of the
polynomials gi(λ), defined as

g1(λ) = λ − c1 ,

g2(λ) = λ2 − c1λ − c2 = λg1(λ) − c2 ,

...

gi(λ) = λi − c1λ
i−1 − · · · − ci = λgi−1(λ) − ci ,

gn−1(λ) = λn−1 − c1λ
n−2 − · · · − cn−1 ,

gn(λ) = λn − c1λ
n−1 − · · · − cn−1λ − cn = ch(λ) ,

which form the sequence of polynomials from Horner’s method (see Sec-
tion 5.3). So up to a scalar multiplier Pλ is

(6.6) Pλ = An−1 + g1(λ)An−2 + g2(λ)An−2 + · · · + gn−1(λ)I ,

which follows by using ch(λ) = 0 and rearranging the formulas from (6.5).
In the simple case in which chA(λ) has n distinct roots λ1, λ2, . . . , λn,

we will show that it is easy to represent powers of A in terms of the Pλ.
Assume that there are n scalars α1, α2, . . . , αn such that

(6.7) I =
n∑

i=1

αiPλi .

Then

Ak = Ak
n∑

i=1

αiPλi =
n∑

i=1

αiA
kPλi =

n∑
i=1

αiλ
k
i Pλi .

Further, if λ1 is a strictly dominant eigenvalue then

lim
k→∞

Ak

λk
1

= lim
k→∞

n∑
i=1

αi

(
λi

λ1

)k

Pλi = α1Pλ1 .

We are left with calculating α1. Luckily, this is not difficult. Since APλi = λiPλi ,
then (A − λiI)Pλi = 0, and for any scalars a, b,

(A − λiI)(A − λjI)(aPλi + bPλj)
= a(A − λjI)(A − λiI)Pλi + b(A − λiI)(A − λjI)Pλj

= a(A − λjI)0 + b(A − λiI)0 = 0 .

So the matrix polynomial (A−λ2I)(A−λ3I) · · · (A−λnI) annihilates every
linear combination of Pλ2 , . . . , Pλn ; that is,

(A − λ2I) · · · (A − λnI)
n∑

i=2

biPλi = 0 .

152 6. Leslie’s Population Matrix Model

Now the matrix polynomial (A−λ2I) · · · (A−λnI) can be written as ch(A)
A−λ1I

because the polynomial in A in the denominator exactly divides the poly-
nomial in A in the numerator. Next, consider the action of (A − λjI) on
Pλ1 . We see that

(A − λjI)Pλ1 = APλ1 − λjPλ1 = λ1Pλ1 − λjPλ1 = (λ1 − λj)Pλ1 .

So
(A − λiI)(A − λjI)Pλ1 = (λ1 − λi)(λ1 − λj)Pλ1

and

ch(A)
A − λ1I

Pλ1 = (λ1 − λ2)(λ1 − λ3) . . . (λ1 − λn)Pλ1

= lim
λ→λ1

ch(λ)
λ − λ1

Pλ1

= lim
λ→λ1

ch(λ) − ch(λ1)
λ − λ1

Pλ1

= ch′(λ1)Pλ1 .

Actually, in this calculation we made use of no special property of the
eigenvalue λ1, so

ch(A)
A − λiI

Pλi = ch′(λi)Pλi

holds for each eigenvalue λi.
We now want to use this result on the equation

I =
n∑

i=1

αiPλi

to compute the αi’s. So

(6.8)
ch(A)

A − λjI
I =

n∑
i=1

αi
ch(A)

A − λjI
Pλi = αj ch′(λj)Pλj

where
Pλj = An−1 + g1(λj)An−2 + · · · + gn−1(λj)I .

Since the coefficient of An−1 in ch(A)
A−λjI is 1, equating the coefficients gives

αj = 1/ch′(λj). In fact, we also have Pλj = ch(A)
A−λjI , which one can easily

verify is the same matrix polynomial as the one we computed in (6.6).
These computations demonstrate the following theorem.

Theorem 6.4.1. If A is a companion matrix with n distinct eigenvalues
and λ1 is a strictly dominant eigenvalue, then

lim
k→∞

Ak

λk
1

=
1

ch′(λ1)
Pλ1 , where Pλ1 =

ch(A)
A − λ1I

.

6.4 Companion Matrices 153

A few comments on this theorem are necessary. First, if the eigenvalues
are distinct, isn’t there only one largest eigenvalue? No, there may still be
several eigenvalues with the same magnitude. For instance,

A =
[
0 1
1 0

]
has chA(λ) = λ2 − 1, and the two eigenvalues, λ1 = 1 and λ2 = −1, have
the same magnitude. In this case, it is easy to see that

AK =

{
I if K is even ,

A if K is odd ,

and AK/λK
1 has no limit. Taking absolute values of matrix elements does

not help, because∣∣AK/λK
1

∣∣ =
∣∣AK/λK

2

∣∣ =

{
I if K is even ,

A if K is odd .

It is possible to get a convergence theorem when absolute values are re-
placed by matrix norms. Recall that absolute value takes a complex num-
ber, which may be a negative real number or have a non-zero imaginary
part, and returns a positive real number, the magnitude of the complex
number. In a similar fashion, it is possible to define a norm that takes a
matrix and returns a positive real number, the magnitude of the matrix,
but we do not pursue matrix norms at this point. Second, why must λ1 be
distinct from the other eigenvalues? Because the limit contains 1/ch′(λ1),
and if λ1 were a multiple eigenvalue, ch′(λ1) would be zero, and the claimed
limit would not be defined. Also, there would be an inconsistency in (6.8),
and the scalars in (6.7) could not be found.

There is a logical hole in what we have just done. We assumed that
solving for Pλ could be carried out by equating the coefficients of Aj for each
j on either side of the equation APλ = λPλ. (See equation (6.2).) This is
tantamount to assuming that the powers of A are linearly independent;
that is, if

b1A
n−1 + b2A

n−2 + · · · + bnI = 0 ,

then b1 = b2 = · · · = bn = 0. This is equivalent to the situation in which the
minimal polynomial equals the characteristic polynomial, and for general
matrices this assumption is not valid. For example, if A = I, then 1 · A +
(−1) ·I = 0, and the powers of A are not linearly independent. Fortunately,
we have an extra assumption about the matrices we are using. We have
assumed that they are in companion form; that is,

A =

⎡⎢⎢⎢⎣
c1 c2 . . . cn

1 0 . . . 0
. . .

0 1 0

⎤⎥⎥⎥⎦

154 6. Leslie’s Population Matrix Model

with cn = 0.
We now show that if A is in companion form, then An−1, An−2, . . . , I

are linearly independent, which means that the only choice of b1, b2, . . . , bn

with

(6.9) b1A
n−1 + b2A

n−2 + · · · + bnI = 0

has all bi equal to 0. This equation (6.9) is a matrix equation, and for it
to hold as a matrix equation it must hold for each column. In particular,
Ai en is the last column of Ai, and (6.9) implies that

(6.10) b1A
n−1 en + b2A

n−2 en + · · · + bnI en = 0 .

We claim that Ai en has the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

—
—
...

—
cn

0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎬⎪⎭ i

⎫⎪⎬⎪⎭ n − i ;

that is, the ith entry is cn and the last n − i entries are 0. This claim is

valid for i = 1, since the last column of A is simply

⎛⎜⎜⎜⎝
cn

0
...
0

⎞⎟⎟⎟⎠. Assuming that

the last column has the claimed form for Ai, then the last column of Ai+1

is given by

Ai+1 en = A Ai en =

⎡⎢⎢⎢⎣
c1 c2 . . . cn

1 0 . . . 0
. . .

0 1 0

⎤⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

—
...

—
cn

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

—
...

—
—
cn

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the claim holds for i = 1 through i = n−1. For i = 0, we want the last
column of I, which is en. For (6.10) to be valid, bn must be 0, since all of

6.4 Companion Matrices 155

the other vectors being added have a 0 as the last component. Hence, (6.10)
becomes b1A

n−1 en + · · · + bn−1A en = 0, and similarly we can see that
bn−1 = 0. Continuing this argument, b1 = b2 = · · · = bn = 0. So the first
n powers of a companion matrix are linearly independent, and equating
coefficients of these powers was a valid operation and there is no logical
hole in the proof of Theorem 6.4.1.

6.4.1 Matrices with repeated eigenvalues

Unfortunately, even companion matrices can fail to have distinct eigenval-
ues, and since we get only one Pλ for each λ, it may not be possible to
represent I as a linear combination of the Pλ’s. But the last theorem sug-
gests a natural generalization. If λ1 is an eigenvalue of multiplicity m, then
ch(A) is divisible by (A − λ1I)m. So instead of having a single Pλ1 given
by ch(A)

A−λ1I , we can have instead m matrices P
(1)
λ1

, P
(2)
λ1

, . . . , P
(m)
λ1

with

P
(j)
λ1

=
ch(A)

(A − λ1I)j
.

This form has the pleasant consequence that

(A − λ1I)P (j)
λ1

= P
(j−1)
λ1

for j > 1 ,

and, of course, (A − λ1I)P (1)
λ1

= 0.
As before, to study the behavior of powers of A we look at an expansion

of I. To keep the notation simple, we write the Pλ’s without superscripts,
and have

I =
n∑

i=1

αiPλi ,

which looks like the expansion we used before. The extra complication is
that the formula for the αi’s is slightly more complex. If λj is a root of
multiplicity 1, consider

ch(A)
A − λjI

I =
ch(A)

A − λjI

∑
αiPλi = αj

ch(A)
A − λjI

Pλj = αjch
′(λj)Pλj ,

and so αj = 1
ch′(λj) , since Pλj = ch(A)

A−λjI . If λi is a root of multiplicity m,
consider

ch(A)
(A − λiI)m

I =
ch(A)

(A − λiI)m

∑
αjPλj

=
ch(A)

(A − λiI)m
[α1P

(1) + α2P
(2) + · · · + αmP (m)]

156 6. Leslie’s Population Matrix Model

where P (1), . . . , P (m) are the eigenmatrices associated with λi. Of course,
the eigenmatrices associated with other eigenvectors are annihilated by this
operator. For

r(A) =
ch(A)

(A − λiI)m

we have

P (m) = r(A)[α1P
(1) + α2P

(2) + · · · + αmP (m)] .

Now

AP (1) = λiP
(1) ,

AP (2) = λiP
(2) + P (1) , A2P (2) = λ2

i P
(2) + 2λiP

(1) .

So

AlP (2) = λl
iP

(2) + l · λl−1
i P (1) ,

and

AlP (j) = λl
iP

(j) +
(

l
1

)
λl−1

i P (j−1) +
(

l
2

)
λl−2

i P (j−2) + · · · .

Hence,

P (m) = α1r(λi)P (1)

+ α2[r(λi)P (2) + r′(λi)P (1)]
...

+ αm[r(λi)P (m) + r′(λi)P (m−1) + r′′(λi)P (m−2) + · · ·] .

Equating the coefficients of the P (i)’s gives

1 = αmr(λi) ,

0 = αmr′(λi) + αm−1r(λi) ,

0 = αmr′′(λi) + αm−1r
′(λi) + αm−2r(λi) ,

...

0 = αmrm−1(λi) + αm−1r
m−2(λi) + · · · + α1r(λi) .

Since r(λi) is non-zero, this is an invertible triangular system of m linear
equations in m unknowns; it has a unique solution which can be found by
back substitution. We can compute powers of A by

Ak =
n∑

i=1

αiA
kPλi ,

6.5 Nonnegative Companion Matrices 157

but we may have that AP
(2)
λi

= λiP
(2)
λi

+ P
(1)
λi

if there are eigenvalues with
multiplicity greater than 1. But these “extra terms” can only grow as a
polynomial in k times λk

i . Thus, if we assume that λ1 is the eigenvalue of
greatest magnitude and that λ1 is not a multiple root, then limk→∞ Ak

λk
1

does not have any extra terms, because (λi/λ1)k times any polynomial in
k still goes to 0 as k increases. This gives an improved form of Theorem
6.4.1.

Theorem 6.4.2. If A is a companion matrix and the dominant eigenvalue
(the eigenvalue with largest magnitude) λ1 is simple, then

lim
k→∞

Ak

λk
1

=
1

ch′(λ1)
Pλ1 , where Pλ1 =

ch(A)
A − λ1I

,

and this limiting matrix has rank 1. That is, there is some vector X such
that the limiting matrix can be written as

(X X · · · X)

⎡⎢⎢⎢⎣
b1 0 · · · 0

b2

. . .
0 · · · 0 bn

⎤⎥⎥⎥⎦ ,

or said another way, every column of the limiting matrix is a scalar multiple
of any other column of the limiting matrix.

Proof. If Z is the limiting matrix, then it does satisfy the equation AZ =
λ1Z. Each column Zi of Z also satisfies AZi = λ1Zi, and so

c1Zi·1 + c2Zi·2 + · · · + cnZi·n =λ1Zi·1 ,

Zi·1 =λ1Zi·2 ,

...
Zi·n−1 =λ1Zi·n

where Zi·j means the jth component of the vector Zi. If Zi·n were known,
then Zi·n−1, . . . , Zi·1 could be computed. The top equation is redundant
and merely says that λ1 satisfies the characteristic polynomial. Thus, up
to one unknown multiplier Zi·n, this system of equations has a unique
solution, and the theorem follows.

6.5 Nonnegative Companion Matrices

Although companion matrices capture the structure of Leslie matrices, they
do not take into account the Leslie assumptions of nonnegativity. In this

158 6. Leslie’s Population Matrix Model

section we consider the extra properties that follow when all entries in a
companion matrix are nonnegative.

The characteristic polynomial of either a Leslie matrix or a nonnegative
companion matrix can be written in the form

ch(λ) = λn −
n∑

i=1

ciλ
n−i ,

where each ci ≥ 0 and cn > 0. As shown in Section 5.1, such nonnegative
polynomials are of two types: the primitive type, which has gcd{i|ci > 0} = 1,
and the periodic type, which has g = gcd{i|ci > 0} > 1.

A primitive polynomial has exactly one positive real root λ0, and this root
is dominant in the sense that λ0 > |λi| for any other root λi. A periodic
polynomial with period g has non-zero coefficients only at positions that are
multiples of g, which means that λ appears in the polynomial only as powers
of λg. Therefore, the characteristic polynomial of a periodic nonnegative
companion matrix can be viewed as a polynomial p(x), where x = λg and
p(x) is now a primitive polynomial with a unique positive real root x0.
The positive root of ch(λ) is the positive solution to λg = x0, and since
λ0 is positive, then λ0 = x

1/g
0 . This λ0 is not strictly dominant, because

λg = x0 has g roots all of the same magnitude, and these equal-magnitude
roots give rise to oscillations and asymptotic periodic behavior of period
g. We consider these possibilities in the next subsection. Oscillations are
also possible in companion matrices that have some negative entries. (Are
these non-nonnegative?) We do not consider such matrices in detail, but
in Exercise 6.19 there is an example of a companion matrix that behaves
periodically but its characteristic polynomial is not periodic.

Since a nonnegative companion matrix with a primitive characteristic
polynomial has a dominant eigenvalue, we can prove a stronger version of
Theorem 6.4.2 for such matrices.

Theorem 6.5.1. If A is a nonnegative companion matrix with a primitive
characteristic polynomial, then there is a power of A that is strictly positive,
A has a strictly dominant positive eigenvalue λ0,

lim
K→∞

AK

λK
0

=
1

ch′(λ0)
Pλ0 , where Pλ0 =

ch(A)
A − λ0I

,

and this limiting matrix is a strictly positive matrix with rank 1.

Proof. Nonnegativity implies that λ0 is the dominant eigenvalue, and from
Exercise 5.2 we know that ch′(λ0) > 0. Theorem 6.4.2 implies convergence.
We are left with showing that the limiting matrix is strictly positive. By
the division algorithm, ch(λ)/(λ−λ0) = λn−1 +g1λ

n−2 + · · ·+gn−1, where

6.5 Nonnegative Companion Matrices 159

the coefficients are

g1 = λ0 − c1 ,

g2 = λ2
0 − c1λ0 − c2 ,

...

gn−1 = λn−1
0 − c1λ

n−2
0 − · · · − cn−1 = cn/λ0.

Clearly, gn−1 > 0, and this implies that gn−2 through g1 are also positive.
(Also, refer to Exercise 5.14.) So Pλ0 = An−1 + g1A

n−2 + · · · + gn−1I,
which is a positive sum of nonnegative matrices. But can it happen that
none of these powers of A is strictly positive? If we look at the graph GA

corresponding to A (see Section 7.3 for more details on the correspondence
between a nonnegative matrix and its graph), then Ar

ij , the (i, j)th entry of
the rth power of A, is positive when there is a path from vj to vi of length
r in GA. The graph for a nonnegative companion matrix contains at least
the edges in the following diagram

v1 v2 vn. . .

so there is a path between any pair of vertices, and the length of this path
is between 0 and n − 1. Hence, Ar

ij is positive for some 0 ≤ r ≤ n − 1,
which means that the positive sum Pλ0 of these powers of A is strictly
positive.

6.5.1 Periodic nonnegative companion matrices

Now that we understand the convergence properties of primitive companion
matrices (that is, companion matrices whose characteristic polynomials are
primitive), we would like to consider nonnegative companion matrices that
are periodic in the sense that their characteristic polynomials can be written
in the form

ch(λ) = (λg)
n
g − cg(λg)

n−g
g − c2g(λg)

n−2g
g − · · · − cg n/g ,

and these can be viewed as polynomials in λg rather than as polynomials in
λ. We want to reduce the periodic case to the primitive case. Here “reduce”
means that we would like to represent or think about an imprimitive matrix
as several primitive matrices, apply the theorems about primitive matrices,
and then put the results together to obtain an analysis of imprimitive
matrices. This idea of reduction is a central unifying concept in all of

160 6. Leslie’s Population Matrix Model

mathematics, and is also the basis for divide-and-conquer algorithms [102]
in computer science. (See also Section 9.4.)

Assume that we have a matrix L with g = 2, where this g is, of course,
the greatest common divisor of the cycle lengths in the graph of the matrix.
This quantity is also called the index of imprimitivity, but it is simply
easier to call it g. We can associate a graph G(L) with the matrix

L =

⎡⎢⎢⎣
0 c2 0 . . . 0 cn

1 0 0 . . . 0 0
. . .

0 0 0 . . . 1 0

⎤⎥⎥⎦ .

We’ve chosen to use the convention that if Li,j > 0, there is an edge from vi

to vj . This is the opposite direction to that used in the previous diagram.
There is an edge from vn to v1 and a cycle of length n passing through this
edge. The assumption that g = 2 implies that n is even. So the graph looks
like this:

v1 v2

v3 v4

vn−1 vn

...
...

There may be some other edges from v1, but they all go to vertices in the
second column, vertices with an even index because g = 2. Now let’s form
a new graph whose edges are the paths of length 2 in G(L); a part of this
graph looks like this:

6.5 Nonnegative Companion Matrices 161

v1 v2v3 v4

v5 v6vn−1 vn

.

The old edges from v1 to vi now appear as edges from v1 to vi−1 and as
edges from v2 to vi, but there are no edges from an even vertex to an
odd vertex, and there are no edges from an odd vertex to an even vertex.
Notice that the original connected graph has been split into two graphs with
no edges between them. Further notice that two new graphs are identical
(isomorphic). By the usual reasoning about adjacency matrices, L2 is the
matrix that corresponds to this graph with two parts. If we permute the
columns of L2 so that the odd positions appear first and we permute the
rows in the same way, we obtain a matrix of the form

[
A 0
0 A

]
, where A =

⎡⎢⎢⎢⎣
f2 f4 · · · fn

1 0
. . .

...
1 0

⎤⎥⎥⎥⎦ .

So, pleasantly enough, A is a companion matrix, and in fact a primitive
companion matrix because using paths of length two divides the cycle
lengths by 2, and converts g = 2 for L into g = 1 for A.

At this point we should recall a few facts about permutation matrices. A
permutation matrix Π has exactly one 1 in each row and each column
and 0’s elsewhere. If A is a matrix and Π is a permutation matrix, then AΠ
is a matrix with the columns of A permuted. The position of the 1 in the
ith column of Π determines which column of A appears as the ith column
of AΠ. Similarly, ΠA is a matrix with the rows permuted. The position of
the 1 in the ith row of Π determines which row of A appears as the ith row
of ΠA. Now consider the effect of applying ΠT , the transpose of Π, the
matrix whose rows are the columns of Π. Then ΠT AΠ is the matrix that
results from permuting the rows of AΠ in the same way as the columns of
A were permuted in AΠ. This is exactly the kind of operation we want to
carry out on imprimitive matrices. Finally, consider ΠT Π. The single 1 in
the ith row of ΠT matches the single 1 in the ith column of Π, and since
there are no other 1’s in the same row as this 1, the product matrix has in
its ith row a 1 only at position i. Hence, ΠT Π equals the identity matrix,
and we conclude that the transpose of a permutation matrix is the inverse
of the permutation matrix.

162 6. Leslie’s Population Matrix Model

For our example matrix L, the appropriate Π permutes the odd columns
so that they lie in front of the even columns, and

ΠT L2Π =
[
A 0
0 A

]
and

L2 = Π
[
A 0
0 A

]
ΠT .

Now consider (ΠT L2Π)(ΠT L2Π) = ΠT L4Π, since ΠT Π = I. This gives

ΠT L2KΠ =
[
AK 0
0 AK

]
.

Of course, A satisfies the hypotheses of Theorem 6.5.1, so

lim
K→∞

AK

µK
0

=
1

ch′
A(µ0)

chA(A)
A − µ0I

,

where chA(λ) is the characteristic polynomial of A and µ0 is the unique
positive root of this nonnegative polynomial. Most conveniently, chA(λ2) =
chL(λ), and replacing λ2 by λ gives the characteristic polynomial for A.
This also means that the dominant eigenvalue µ0 for A is the square of the
dominant eigenvalue λ0 for L. Hence,

lim
K→∞

L2K

λ2K
0

= Π

⎡⎢⎢⎣limK→∞
AK

µK
0

0

0 limK→∞
AK

µK
0

⎤⎥⎥⎦ΠT

=
1

ch′
A(µ0)

Π
{

chA(A)
A − µ0I

[
I 0
0 I

]}
ΠT ,

where I is the n
2 × n

2 identity matrix. While this formula gives an answer,
the matrix without the Π’s might be more intuitive:

lim
K→∞

L2K

λ2K
0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 0 α2 0 · · · αn/2 0
0 α1 0 α2 · · · 0 αn/2

α1B2 0 α2B2 0 · · · αn/2B2 0
0 α1B2 0 α2B2 · · · 0 αn/2B2

...
...

...
...

...
...

α1Bn/2 0 α2Bn/2 0 · · · αn/2Bn/2 0
0 α1Bn/2 0 α2Bn/2 · · · 0 αn/2Bn/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here we are trying to explicitly display two facts: that the limiting matrix
for A has rank one and that the permutations Π and ΠT spread out the
two copies of the limiting matrix.

6.5 Nonnegative Companion Matrices 163

Let us call this limiting matrix L∞ and look at the action of L on L∞.
Clearly, either by the derivation or direct calculation

L2

λ2
0

L∞ = L∞ .

But what about L
λ0

L∞? This operation results in a matrix that is in a sense
complementary to L∞. That is, the produced matrix, let us call it Lw, has
0’s where L∞ has positive entries, and Lw has positive entries where L∞ has
0’s. Unfortunately, the values are not quite so nice. In L∞, each column is
either a multiple of the first column or a multiple of the first column shifted
down one component. In Lw, the odd-position columns all start with 0 and
are multiples of the first column of Lw. The even-position columns are all
multiples of the second column of Lw and this second column begins with a
positive entry, but it is not necessary that the second column be a multiple
of a shifted copy of the first column.

The limiting behavior for general g follows immediately from our example
with g = 2.

Theorem 6.5.2. For a nonnegative companion matrix L with period g ≥ 2,

lim
K→∞

LgK

λgK
0

= L0 =
1

ch′
A(λg

0)
Π

⎧⎪⎨⎪⎩ chA(A)
A − λg

0I

⎡⎢⎣I 0
. . .

0 I

⎤⎥⎦
⎫⎪⎬⎪⎭ΠT ,

where

A =

⎡⎢⎢⎢⎣
fg f2g · · · fn

1 0
. . .

...
1 0

⎤⎥⎥⎥⎦ , chA(λ) = λ
n
g − fgλ

n
g −1 − · · · − fn ,

and Π is the permutation matrix that moves the columns with indices
≡ 1 mod g before those with indices ≡ 2 mod g, . . . , before those with in-
dices ≡ 0 mod g. Also:
(a) L0 has rank g.
(b) If i ≡ j (mod g), the ith column of L0 has positive entries in positions

j, j + g, j + 2g, . . . and zeros elsewhere.
(c) Every column of L0 is a shifted multiple of the first column.

Let Lr =
(

L
λ0

)r

L0. Then:
(a) L0, L1, . . . , Lg−1 are linearly independent.
(b) If i + r ≡ j (mod g), the ith column of Lr has positive entries in

positions j, j + g, j + 2g, . . . and zeros elsewhere.
(c)

(
L
λ0

)g

Lr = Lr.

164 6. Leslie’s Population Matrix Model

6.6 Back to Leslie Matrices

Up to this point we have used companion matrices rather than Leslie ma-
trices because the survival rates in the Leslie matrices complicate things
slightly. If B is a Leslie matrix,

B =

⎡⎢⎢⎢⎣
f1 f2 · · · fn

s1 0
. . .

...
sn−1 0

⎤⎥⎥⎥⎦ ,

then B can be converted to the companion matrix L via the diagonal matrix
S by L = S−1BS, where

S =

⎡⎢⎢⎢⎢⎢⎣
1

s1

s1s2

. . .
s1 . . . sn−1

⎤⎥⎥⎥⎥⎥⎦ ,

S−1 =

⎡⎢⎢⎢⎢⎢⎣
1

1/s1

1/s1s2

. . .
1/s1 . . . sn−1

⎤⎥⎥⎥⎥⎥⎦ ,

and

L =

⎡⎢⎢⎢⎢⎢⎢⎣

f1 s1f2 s1s2f3 · · · s1 . . . sn−1fn

1 0

1
...

. . .
...

1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

This claim can be easily verified by direct calculation. Of course, we also
have B = SLS−1 and BK = SLKS−1. Hence, the asymptotic behavior of
B can be directly calculated from the asymptotic behavior of the compan-
ion matrix L. Each entry of BK can be obtained from the corresponding
entry of LK by multiplying and dividing by products of the survival rates.
Specifically, the (i, j)th entry is obtained by multiplying by s1 · · · si−1 and
dividing by s1 · · · sj−1. So the (i, j)th multiplier is

s1 · · · si−1

s1 · · · sj−1
=

⎧⎪⎨⎪⎩
sj · · · si−1 if i > j ,

1 if i = j ,

1/si · · · sj−1 if i < j .

6.6 Back to Leslie Matrices 165

If B is a primitive Leslie matrix, the corresponding companion matrix L
is also primitive and there is an analog to Theorem 6.5.1. But S and S−1

can be factored across powers and limits and then applied to the limiting
matrix. Since the limiting matrix is a polynomial in the companion matrix,
applying S and S−1 converts this to a polynomial in the Leslie matrix.
Hence the convergence theorem for primitive Leslie matrices is identical to
the convergence theorem for primitive companion matrices:

Theorem 6.6.1. If A is a primitive Leslie matrix, then A has a strictly
dominant positive eigenvalue λ0,

lim
K→∞

AK

λK
0

=
1

ch′(λ0)
Pλ0 , where Pλ0 =

ch(A)
A − λ0I

,

and this limiting matrix is a strictly positive matrix with rank 1.

6.6.1 Periodic Leslie matrices

For periodic Leslie matrices we can obtain a convergence theorem by taking
Theorem 6.5.2 and multiplying the companion matrices by S and S−1.
In a moment we will restate that theorem, this time for Leslie matrices
rather than companion matrices. An obvious question to ask is, why did
we bother to analyze companion matrices rather than looking directly at
Leslie matrices? The answer is that if we took a Leslie matrix with g > 1,
took the gth power, and then permuted rows and columns, the resulting
matrix would become ⎡⎢⎢⎢⎣

A1

A2

. . .
Ag

⎤⎥⎥⎥⎦ ,

where the matrices A1, . . . , Ag are Leslie matrices but they are not nec-
essarily identical. The complication comes from the fact that the survival
rates can be different. (The matrices Ai are similar, but that is somewhat
messy to check.) By using companion matrices, the corresponding Ai are
identical because their subdiagonals are strings of ones.

Theorem 6.6.2. For a Leslie matrix L with index of imprimitivity g,

lim
K→∞

LgK

λgK
0

= L0 =
1

ch′
A(λg

0)
SΠ

⎧⎪⎨⎪⎩ chA(A)
A − λg

0I

⎡⎢⎣I 0
. . .

0 I

⎤⎥⎦
⎫⎪⎬⎪⎭ΠT S−1 ,

166 6. Leslie’s Population Matrix Model

where

A =

⎡⎢⎢⎢⎢⎢⎣
s1 · · · sg−1fg s1 · · · s2g−1f2g · · · s1 · · · sn−1fn

1 0

. . .
...

1 0

⎤⎥⎥⎥⎥⎥⎦ ,

chA(λ) = λ
n
g − s1 · · · sg−1fgλ

n
g −1 − · · · − s1 · · · sn−1fn ,

chA(λg
0) = 0 ,

S = diag(1, s1, s1s2, . . . , s1 · · · sn−1) ,

and Π is the appropriate permutation matrix. Also:

(a) L0 has rank g.
(b) If i ≡ j (mod g), the ith column of L0 has positive entries in posi-

tions j, j + g, j + 2g,
(c) Every column of L0 is a shifted multiple of the first column.

Let Lr =
(

L
λ0

)r

L0 , 0 ≤ r < g. Then:
(a) L0, L1, . . . , Lg−1 are linearly independent.
(b) If i + r ≡ j (mod g), the ith column of Lr has positive entries in

positions j, j + g, j + 2g, · · · .
(c)

(
L
λ0

)g

Lr = Lr.

Figures 6.1 and 6.2 are from the Census Bureau and give the predicted
number of males and females in the United States for two different years.
Both of them are projections; that is, they are estimates based on a model
and data gathered at an earlier date. Figure 6.1 shows the estimate for 2000,
and Figure 6.2 shows the estimate for 2050. The age classes begin with the
youngest on the bottom and proceed to the oldest on the top. In this form,
we might expect the graphs to have a pyramid form rather than the in-
verted pyramid form expected when the oldest age class is on the bottom.
Figure 6.1 shows that the U.S. population is not in equilibrium, because
the “baby boom” is still passing through the population. Figure 6.2 shows a
prediction that the population in 2050 will have reached a distribution that
has a rough pyramid shape. We should mention that the U.S. Census Bu-
reau uses models that are more complicated than the simple Leslie model;
for example, their models include immigration. In spite of this, an approach
to a pyramid shape is still predicted. A conclusion like this, which does not
depend on the details of the mathematical model, is called robust. Sci-
entists generally have more confidence in robust predictions because they
know that their model omits many details or variables.

6.6 Back to Leslie Matrices 167

FIGURE 6.1. Projected U.S. Population in 2000.

FIGURE 6.2. Projected U.S. Population in 2050.

168 6. Leslie’s Population Matrix Model

6.6.2 Averaging

As we have just seen, the asymptotic behavior of a periodic Leslie matrix is
more complicated than the straightforward convergence result for primitive
matrices. Here we want to look at the “average” behavior of a periodic
matrix over its period, and we show that a convergence theorem similar to
that for primitive matrices can be obtained.

Theorem 6.6.3 (Averaging Theorem). If L is an n × n Leslie matrix
(or a nonnegative companion matrix) with period g > 1, then

lim
t→∞

1
g

g∑
i=1

Lt+i

λt+i
0

=
1

ch′(λ0)
Pλ0 =

1
ch′(λ0)

ch(L)
L − λ0I

,

where

Pλ0 = Ln−1+· · ·+λg−1
0 Ln−g+(λg

0−cg)Ln−g−1+· · ·+(λn−1
0 −cgλ

n−g−1
0 −. . .)I

is a strictly positive matrix of rank 1.

Proof. As we saw in Theorem 5.1.4, L has g roots of maximum modulus;
namely, λ0, ωλ0, . . . , ω

g−1λ0, where ω is a principal gth root of unity. For
each of these simple roots there is an eigenmatrix Pj such that LPj =
λ0ω

jPj . As in our previous arguments, we can expand I in terms of these
eigenmatrices, which are again linearly independent. Applying (L/λ0)t and
taking the limit, all terms except those corresponding to the maximal-
modulus eigenvalues disappear. So we need only look at

1
g

g−1∑
i=0

(L

λ0

)i
g−1∑
j=0

αjPj =
1
g

g−1∑
j=0

αj

g−1∑
i=0

(L

λ0

)i

Pj

=
1
g

g−1∑
j=0

αj

g−1∑
i=0

ωijPj =
1
g

g−1∑
j=0

αjPj

g−1∑
i=0

ωij .

Now, since ω is a principal gth root of unity,

g−1∑
i=0

ωij =

{
0 if j ≡ 0 (mod g) ,

g if j ≡ 0 (mod g) ,

and the above sum becomes

1
g

α0P0g = α0P0 .

By the argument leading up to Theorem 6.4.1, α0 = 1/ch′(λ0). The ar-
gument for Theorem 6.4.2 shows that the limiting matrix has rank 1, and
the argument for Theorem 6.5.1 shows that the limiting matrix is strictly
positive.

6.7 The Limiting Effect of L on Nonnegative Vectors 169

6.7 The Limiting Effect of L on Nonnegative
Vectors

Now that we know the limiting form of Leslie matrices, we are in a position
to ask about the longterm predictions made by the Leslie model. Specif-
ically, suppose one measures a population and represents this population
by the nonnegative vector X0. If one also measures the fertility rates and
survival rates and uses these measurements to construct the Leslie ma-
trix L, then under the assumption that these rates remain constant, one
can predict that after k time intervals the population should be LkX0. Of
course, it is relatively easy to calculate LkX0 even for very large k by using
a computer. On the other hand, one hopes that the theory developed in the
earlier sections of this chapter will lead to predictions that do not require
much computation.

Leslie’s Convergence Theorem for nonnegative vectors (Theorem 6.2.1)
follows immediately from Theorem 6.6.1 on the convergence of primitive
matrices. Provided X0 is nonnegative with at least one positive component,
Xt converges to a positive multiple of the stable age distribution. The con-
vergence is in the absolute error sense if all eigenvalues, except perhaps λ0,
are less than 1 in absolute value. In general, convergence is only in the
relative error sense. As long as at least one component of X0 is positive,
then LkX0 converges to a positive multiple of the unique positive eigen-
vector that corresponds to λ0. Further, if λ0 > 1, the positive eigenvector
has decreasing components and thus displays the inverted pyramid form.
Each age class in this eigenvector is less than 1/λ0 times the previous age
class. If λ0 = 1, then the components of the eigenvector are nonincreasing,
but one needs the assumption that the survival rates are less than 1 to get
decreasing age classes. If λ0 < 1, then the form of the eigenvector depends
on the ratios between the survival rates and λ0. In the “usual” case, one
assumes λ0 > 1 (allowing other eigenvalues to have absolute values greater
than 1) and concludes that LkX0 converges in a relative error sense to an
inverted pyramid form.

Theorem 6.5.1 also shows that there is convergence even if X0 is not non-
negative, but the convergence may be to a negative or zero multiple of the
stable age distribution. The coefficient γ calculated in Leslie’s Convergence
Theorem is the appropriate multiplier.

We now want to consider what happens when we have an imprimitive
Leslie matrix. Are oscillations possible? Do oscillations necessarily occur?
To see what happens, we apply L0 from Theorem 6.6.2 to X0. First, S−1

is applied to X0, which changes the values by dividing them by positive
quantities. So a positive component of X0 is not changed into a 0 compo-
nent, and a 0 component is not changed into a positive component. Next,
ΠT acts by gathering components into g subvectors. Each subvector con-
sists of those components whose indices were congruent modulo g in the

170 6. Leslie’s Population Matrix Model

original X0. Because of the decomposed structure of the matrix, each of
the subvectors is now treated separately. In fact, each of the subvectors is
now acted on by the matrix

chA(A)
ch′

A(λg
0)(A − λg

0I)
,

which is the limiting form for the primitive Leslie matrix A. So each sub-
vector that contains a non-zero component is taken to a multiple of the
unique positive eigenvector of A. Next, the permutation matrix Π undoes
the permutation caused by ΠT . Finally, the diagonal matrix S multiplies
each component by the appropriate product of survival rates.

There are several immediate conclusions obtained from this computation.
Provided there is no i ∈ {1, . . . , g} for which Xi, Xi+g, Xi+2g, Xi+�n

g �g are
all zero, L0X0 is strictly positive. This means that as few as g components
of X0 need to be positive to force L0X0 to be positive. On the other hand, if
there is such an i, then L0X0 will have zeros in the locations whose indices
are congruent to i mod g.

While it is easy to compute the asymptotic period of a Leslie matrix,
it is a little more difficult to compute the asymptotic period of the vector
Xt because this vector’s period depends not only on whether a component
is zero, but also on the actual numerical values of its components. For

example, if L =

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦, then LtX has period 3 for most vectors X ,

but LtX has period 1 if all the components of X are the same. For instance,

L3

⎛⎝3
2
1

⎞⎠ = L2

⎛⎝1
3
2

⎞⎠ = L

⎛⎝2
1
3

⎞⎠ =

⎛⎝3
2
1

⎞⎠ , but L

⎛⎝1
1
1

⎞⎠ =

⎛⎝1
1
1

⎞⎠ .

For this example, X0 = (x1, x2, x3)T leads to a cycle of period 3 iff at least
one of (1, ω, ω2)X0 = x1 + ωx2 + ω2x3 and (1, ω2, ω)X0 = x1 + ω2x2 + ωx3

is non-zero, where ω is a primitive third root of unity.
More generally, using the partial sums from Horner’s Method,

h0(λ) = 1 ,

h1(λ) = λ − f1 ,

h2(λ) = λ2 − f1λ − f2s1 ,

...

hn−1(λ) = λn−1 − f1λ
n−2 − f2s1λ

n−3 − · · · − fn−1s1 · · · s1 ,

6.7 The Limiting Effect of L on Nonnegative Vectors 171

define the row vectors Rj for j = 0, . . . , g − 1 by

R0 =
(
1,

h1(λ0)
s1

,
h2(λ0)
s1s2

, · · · ,
hn−1(λ0)
s1 · · · sn−1

)
Rj =

(
1,

h1(λ0ω
j)

s1
,
h2(λ0ω

j)
s1s2

, · · · ,
hn−1(λ0ω

j)
s1 · · · sn−1

)
.

It is easy to check that RjL = λ0ω
jRj and that RjL

g = λg
0Rj . Now,

RjL
tX0/λt

0 = (Rj ·X0)ωjt, a periodic function of t. Let us define per(j) as
the least p > 0 such that ωjp = 1. In particular, if j = 0, per(j) = 1 and
the above function has period 1; that is, it is a constant function. Notice
also that per(j) ≤ g and per(j) always divides g. Asymptotically, LtX0/λt

0

is a sum of periodic functions, and its period is the least common multiple
of the periods of the functions in the sum. These considerations lead to the
following theorem.

Theorem 6.7.1. If L is a Leslie matrix with period g, then asymptotically
Xt/λt

0 is a periodic function of t with period lcm{ per(j) | (Rj · X0) = 0 }.
This period is a divisor of g. (Here, per(j) is the least p > 0 such that
ωjp = 1, where ω is a principal gth root of unity.)

6.7.1 The period of the total population

Now that we know that Xt/λt
0 becomes periodic, we would like to know

whether this periodicity is visible if one observes only the total population
rather than each component of the population vector. Here the total pop-
ulation is the sum of the components of Xt, and can be written as the
inner product TOTAL = (E, Xt), where E is the vector of all 1’s. (The
standard inner product of two n-component vectors A and B is the sum
of the products of the corresponding components; that is,

∑n
i=1 AiBi. Here

we use (A, B) to represent the inner product of A and B.)
Since we are interested in the asymptotic period, let Xt =

∑g−1
j=0 αjω

jtCj ,
where λ0 is the positive real eigenvalue of L, ω is a principal gth root of
unity, and for λj = λ0ω

j ,

Cj = (λn−1
j , λn−2

j s1 , λn−3
j s1s2 , . . . , s1 · · · sn−1)T .

Note that Xt is a periodic function of t, and Xt/λt
0 approaches Xt. The

period of Xt divides g and depends on which of the α’s are non-zero,
namely, per(Xt) = lcm{per(j) |αj = 0}. Similarly,

per(TOTAL) = per((E, Xt)) = lcm{per(j) |αj(E, Cj) = 0}

and

per(Xt) = per(TOTAL) for every X0 ⇐⇒ (E, Cj) = 0 for all j = 0, . . . , g−1 .

172 6. Leslie’s Population Matrix Model

To see when this will occur, let us define the polynomial e(λ) by

e(λ) =
n∑

i=1

s1 · · · si−1λ
n−i = λn−1 + s1λ

n−2 + · · · + s1 · · · sn−1 ,

so that e(λj) = (E, Cj). To show that the inner product (E, Cj) is non-
zero, we need only show that e(λ) does not have λj as a root. Since each
λj has modulus λ0, if we can show that e(λ) has no root of modulus λ0,
then we can conclude that no λj is a root of e(λ). For this, we use the fairly
standard trick of multiplying e(λ) by λ − λ0 and find that

e(λ)(λ − λ0) =λn − (λ0 − s1)λn−1 − (λ0 − s2)s1λ
n−1

− · · · − (λ0 − sn−1)s1 · · · sn−2λ − s1 · · · sn−1λ0 ,

which is a primitive nonnegative polynomial when λ0 > si for all i =
1, . . . , n − 1. Under this assumption, by Corollary 5.1.5 the polynomial
p(λ) = e(λ)(λ−λ0) has a unique positive root, which is strictly dominant.
Since λ0 > 0 is a root of p(λ), λ0 must be this root. Hence, all other roots
of p(λ), which are exactly the roots of e(λ), are strictly less than λ0 in
complex modulus. From this we obtain the following theorem.

Theorem 6.7.2. For a Leslie model the period of total population equals
the period of the population vector if

λ0 > max{s1, s2, . . . , sn−1}.

For Leslie models we assume that all survival rates si are less than or
equal to 1, and in most applications the further restriction λ0 > 1 applies.
So, this theorem suggests that we should see the same period of oscilla-
tion in both the population vector and the total population. Because this
theorem gives only a sufficient condition for the periods to be equal, they
may be the same even if the condition of the theorem is not satisfied. The
following results, which are proved in Cull and Vogt [44], give some other
sufficient conditions.

Corollary 6.7.3. Other sufficient conditions for the period of total popu-
lation to equal the period of the population vector are:
(a) λ0 ≥ max{s1, s2, . . . , sn−1} and gcd({j|λ0 > sj} ∪ {g}) = 1 ;
(b) λ0 < min{s1, s2, . . . , sn−1} ;
(c) λ0 ≤ min{s1, s2, . . . , sn−1} and gcd({j|λ0 < sj} ∪ {g}) = 1 .

In actual practice, even the total population is difficult to observe, but a
weighted total population might be observed. For example, the probability
of observing an organism might be correlated with its size and age. So older
age classes might be more heavily represented in a sample than younger
age classes. Such observations can be modeled by replacing E with an
arbitrary nonnegative weight vector W . Arguments similar to the above

6.8 Afterword 173

can show that W must satisfy a very restrictive set of equations to give a
period different from that of the population vector. Hence it is reasonable
to expect that the asymptotic periods of the population vector and the
weighted total population are identical.

6.8 Afterword

Let us review briefly what we have done in this chapter. We started with the
Fibonacci model and generalized it to the Leslie model by allowing more
than two age classes. Two complications arose: the problem of periodicity,
and the difficulty of handling survival rates. We first showed that a simple
gcd condition eliminates the periodic case. For survival rates, we switched
to companion matrices, analyzed their behavior, and then used similarity
to transform back to Leslie matrices.

Our major result is the asymptotic convergence of powers of Leslie ma-
trices. We showed that these limiting forms are simple enough to be written
as closed-form expressions. For primitive matrices this form is particularly
simple, and the limiting matrix is one-dimensional.

Of course, biologists are more interested in the population vectors that
they observe than the matrices that they infer. The convergence of pop-
ulation vectors follows from the convergence of powers of the matrices.
For primitive matrices, the population vector converges to the stable age
distribution, and under reasonable circumstances this distribution has the
inverted pyramid form. In general, population vectors will have an oscil-
lating limit whose period depends on the period of the matrix and on the
initial population vector. Analyses of the the Leslie model in terms of vec-
tors rather than matrices can be found in Cull and Vogt [42, 43].

It is worthwhile noting that results in this chapter are closely related to
results in other chapters. In Chapter 5, we discussed nonnegative differ-
ence equations. The companion matrices of this chapter are the matrices
that correspond to nonnegative difference equations. Leslie matrices are
slightly more general, but since they are related to companion matrices by
a similarity transformation, Leslie matrices are closely related to nonneg-
ative difference equations. In Chapter 7, we will discuss matrix difference
equations, and Leslie matrices will turn out to be a form of nonnegative
matrices. The graph techniques that we used for Leslie matrices will also
be used to analyze nonnegative matrices.

The Leslie model has some limitations. It is a linear model. If, as we
suspect, biology is nonlinear, we should be cautious about predictions from
linear models. For example, if a population is growing, the Leslie model pre-
dicts that the population will grow exponentially. Such growth will eventu-
ally deplete a population’s resources, and so we do not expect exponential
growth to continue indefinitely. On the other hand, it may be reasonable

174 6. Leslie’s Population Matrix Model

to think of the Leslie model as a first–order approximation to a nonlinear
growth model. In this case, the linear model may give good predictions in
the short term, even if its eventual predictions are nonsense.

As we mentioned, the original Leslie model forces the matrix to be primi-
tive, and thus it cannot model periodic populations. In Section 6.7.1, based
on work of Cull and Vogt [44], we considered whether periodic behavior
would be visible in population totals. We concluded that under reasonable
circumstances, periodic behavior would still be seen in population totals.
Since periodicities are not seen in most populations, there is some ques-
tion about how relevant periodic Leslie models are to biology. Fortunately,
the example of the periodic cicadas (17-year locusts) shows that there are
some periodic populations. In general, for periodic models we showed that
a periodic limit is expected (refer to Theorem 6.6.2). But we also showed
in the Averaging Theorem (Theorem 6.6.3) that simple Leslie convergence
can be obtained by taking a suitable average over a period.

To apply the Leslie model, one must choose a time unit. For some popu-
lations, the yearly cycle of the environment gives a natural time unit, but
for other populations the appropriate unit is not obvious. In Cull [31], we
looked at this problem and showed that inappropriate time units can lead
to very bad predictions of population growth or decline.

Finally, we should mention that this chapter only scratches the surface of
the myriad uses of matrices in population biology. For further information,
Caswell’s book [25] is a good place to start.

6.9 Exercises

Ex 6.1. Give an inductive proof that the Euclidean Algorithm correctly
computes the greatest common divisor. You should assume that a and b
are nonnegative integers. You can use one of these two numbers as your
induction variable.

Ex 6.2. Show that for a ≤ n and b ≤ n, the Euclidean Algorithm com-
putes the gcd in time O(log n).
Hint: Assume that a is the smaller of the two numbers. Consider the situ-
ation

gcd(a, b) = gcd(b mod a, a) = gcd(a mod [b mod a], b mod a)

and show that a mod [b mod a] ≤ a
2 .

Ex 6.3. Show that the bound in the previous exercise is worst case optimal
by giving an infinite sequence of pairs of integers such that the Euclidean
Algorithm uses Ω(log b) steps on the pair (a, b).
Hint: Think Fibonacci.

6.9 Exercises 175

Ex 6.4. Investigate the use of absolute values with powers of a matrix by
considering

A =
[
−1/2 1/2

1 0

]
and showing which of the following have limits: Ak, |Ak|, Ak/λk

1 , |Ak/λk
1 |,

|Ak|/λk
1 , Ak/|λk

1 |, |Ak|/|λk
1 |. How close is |A8/λ8

1| to its limit?

Ex 6.5. For the Leslie matrix

L =

⎡⎢⎢⎢⎢⎣
0 2 0 0 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ ,

determine the least m0 such that Lm0 � 0. Compare your m0 to the upper
bound computed from the formula in Theorem 6.1.2.

Ex 6.6. For the Leslie matrix

L =

⎡⎢⎢⎢⎢⎣
0 2 5 3 4
1 0 0 0 0
0 1/2 0 0 0
0 0 1/2 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ ,

determine the least m0 such that Lm0 � 0. Compare your m0 to the
upper bound from the formula in Theorem 6.1.2. How does this differ from
Exercise 6.5?

Ex 6.7. For the Leslie matrix

L =

⎡⎢⎢⎢⎢⎣
0 0 0 3 5
1 0 0 0 0
0 1/2 0 0 0
0 0 1 0 0
0 0 0 1/2 0

⎤⎥⎥⎥⎥⎦ ,

determine the least m0 such that Lm0 � 0. Compare your m0 to the upper
bound given by Theorem 6.1.2.

Ex 6.8. Show that if L is a Leslie matrix with only fn > 0 and fn−1 > 0,
then the least m0 such that Lm0 � 0 is m0 = (n − 1)2 + 1.

Ex 6.9. Create a Leslie matrix L in which fi · fi+1 = 0 for all i, but
gcd{i | fi > 0} = 1. Compute the least power m0 such that Lm0 � 0.

Ex 6.10. Show that the assumption that λ1 is unique is necessary for
convergence by considering

A =
[
2 −1
1 0

]

176 6. Leslie’s Population Matrix Model

and showing that λ1 = 1 is a double eigenvalue of A. Further, show that

AK =
[
K + 1 −K

K −(K − 1)

]
= K

[
2 −1
1 0

]
− (K − 1)

[
1 0
0 1

]
,

and so AK/λK
1 does not have a finite limit.

Ex 6.11. Let

F =
[
1 1
1 0

]
be the Fibonacci matrix.

(a) Compute chF (λ).
(b) Find the eigenvalue of largest magnitude, λ1.
(c) Find Pλ1 = chF (λ)/(F − λ1I).
(d) Use the formula from Theorem 6.4.1 to compute

lim
k→∞

F k

λk
1

.

(e) Use λ1 + λ2 = 1 and λ1λ2 = −1 to eliminate λ2 from your formula.
(f) The limiting matrix should be

1√
5

[
λ1 1
1 1

λ1

]
.

Is this consistent with what you know about the asymptotic form for
the Fibonacci numbers?

(g) Calculate the rank of the limiting matrix.
(h) Find a form for the matrix that clearly displays the rank. (Notice

that you can multiply each row of a matrix by a different scalar
by premultiplying the matrix by a diagonal matrix with the scalar
multipliers down the diagonal. Similarly, the columns of a matrix can
be scaled by postmultiplying by a diagonal matrix.)

Ex 6.12. Consider running the Fibonacci sequence in reverse. Use the
inverse of the Fibonacci matrix.

(a) Show that the inverse Fibonacci matrix can be transformed by per-
muting rows and columns to the companion form[

−1 1
1 0

]
.

(b) Show that the eigenvalue with largest magnitude is negative.
(c) Let A be the matrix from (a), and let λ1 be the eigenvalue of largest

magnitude. Does

lim
k→∞

Ak

λk
1

exist?

6.9 Exercises 177

(d) Compare

lim
k→∞

Ak

λk
1

to lim
k→∞

F k

λk
1

.

(e) What does (d) tell you about the growth in magnitude of the Fi-
bonacci numbers with negative indices?

Ex 6.13. The trace of a square matrix A is defined to be the sum of
the entries on its main diagonal. If G(A) is the graph associated with a
nonnegative matrix A, show that the trace of Ak is non-zero iff there is a
cycle of length k in the graph G(A).

Ex 6.14. Assume that you have an O(n3) algorithm that computes the
characteristic polynomial of an n × n matrix A. Assume that A is a non-
negative matrix and the characteristic polynomial is λn + C1λ

n−1 + · · · +
Cn−1λ+Cn. Use the following lemma to construct an O(n3) algorithm that
determines whether A is primitive.

Leverier’s Lemma. Let C1, . . . , Cn be the coefficients of the characteristic
polynomial of the matrix A. For each i, let Si be the trace of Ai. Then,⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
S1 2 0 · · · 0

S2 S1 3
. . .

...
...

. 0
Sn−1 · · · S2 S1 n

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝

C1

C2

...

...
Cn

⎞⎟⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎜⎝

S1

S2

...

...
Sn

⎞⎟⎟⎟⎟⎟⎟⎠ .

Ex 6.15. Prove the Cayley–Hamilton Theorem for companion matrices.
That is, show that a companion matrix satisfies its characteristic polyno-
mial. Further, show that this is the lowest-degree polynomial satisfied by
the matrix.

Ex 6.16. Consider the Leslie matrix[
1 2
1 0

]
.

Find the eigenvectors and the stable age distribution. Does every initial
population converge to the stable age distribution? Consider both absolute
error and relative error, and show that certain vectors converge in one sense
but not in the other.

Ex 6.17. Show by example that there are Leslie matrices L such that the
entries of the limiting matrix limk→∞ Lk/λk

0 are not rational functions of
the the entries in L.

Ex 6.18. Many of the results demonstrated for Leslie matrices also hold
for positive matrices, matrices in which every entry is strictly positive.

178 6. Leslie’s Population Matrix Model

Consider the following two positive matrices

A =
[

6 5
10 11

]
and B =

[
3 2
1 2

]
.

Show by calculation that for each matrix, nonnegative initial vectors con-
verge to the positive eigenvector of the matrix. Is this convergence in the
absolute value or the relative value sense? Does either or both of these
matrices display the inverted pyramid form expected for Leslie matrices?

Ex 6.19. Show that the matrix

A =

⎡⎣1 −1 1
1 0 0
0 1 0

⎤⎦
has period 4, but its characteristic polynomial is not periodic. Further,
show that for most vectors X , AKX has period 4 but there are vectors X
for which AKX has period 1. Show that there are no vectors X such that
AKX has period 2.

Ex 6.20. Prove the results about the period of the total population vector
given in Corollary 6.7.3.

Ex 6.21. Consider the Leslie matrix

L =
[

0 f2

s1 0

]
with s1f2 = 1.

Find conditions on X0 such that LtX0 oscillates with period 2. Show that
there is a weight vector W such that WLtX0 always has period 1 even if
LtX0 oscillates with period 2.

7
Matrix Difference Equations

As we saw in Chapter 6 with the Leslie model, elements of a sequence can
be vectors instead of the usual real or complex numbers. In this chapter we
consider linear difference equations with matrix multipliers whose solutions
are sequences of vectors. Such equations are often called matrix difference
equations because the equations can be written using matrix and vector
notation. We look at homogeneous equations, including the special case in
which the matrix is nonnegative, which has applications to Markov chains.
We discuss the behavior of primitive matrices and use graph theory to give
an efficient algorithm to determine whether a matrix is primitive. After
that, we look at nonhomogeneous matrix difference equations and see how
to reduce them to one–dimensional difference equations.

7.1 Homogeneous Matrix Equations

Let us return to the simplest difference equation, xt+1 = axt. When we
considered such equations before, 〈xt〉 was usually a sequence of complex
numbers and a was a complex constant. It is usual to use capital letters for
vectors and matrices instead of the lowercase letters we use for scalars. So,
our first–order homogeneous matrix difference equation is

(7.1) Xt+1 = MXt .

For this equation to make sense, the sizes of the vectors and matrices must
agree. Accordingly, the X ’s are k×1 column vectors and M is a k×k matrix,
and (7.1) will be called a k–dimensional matrix difference equation.

180 7. Matrix Difference Equations

In printing it is often more convenient to write row vectors, so we also
use XT (the transpose of X) as the row vector corresponding to the column
vector X . To write the components of a vector we use

X = (x1, x2, . . . , xk)T .

You may notice that here subscripts serve double duty, both to indicate a
component of a vector and to indicate the position of a vector in a sequence.
When there is a possibility of confusion we will use function notation for
the sequence, for example,

X(t) = (x1(t), x2(t), . . . , xk(t))T

and
X(t + 1) = (x1(t + 1), x2(t + 1), . . . , xk(t + 1))T .

Written in component form, equation (7.1) becomes

x1(t + 1) = m11x1(t) + m12x2(t) + · · · + m1kxk(t) ,

x2(t + 1) = m21x1(t) + m22x2(t) + · · · + m2kxk(t) ,

. . .

xk(t + 1) = mk1x1(t) + mk2x2(t) + · · · + mkkxk(t) .

As you can see, in this form there is one equation for each component,
and the next value for each component can depend on the values of all
components. (This is in contrast to Chapter 2 and Chapter 6, where a
companion matrix was always used for the multiplier.) While the compo-
nent form makes the equations appear complicated, the matrix form makes
the equation appear simple, and in matrix form the solution is also simple,

(7.2) Xt = M tX0 .

Unfortunately, this solution doesn’t tell us very much, but it does reduce
the problem of solving a difference equation to the problem of matrix mul-
tiplication.

There are at least two natural ways to compute the solution to (7.2). One
way is to start with X0, compute X1 by the multiplication MX0, compute
X2 by MX1, and so forth. This procedure requires about t k2 arithmetic
operations to compute Xt, because k2 operations are used to compute each
matrix–vector product. The other technique is to compute M t and then
compute the one matrix–vector product M t X0. Using the classical matrix
multiplication method (by this we mean using the definition of matrix
multiplication directly), computing the product of two matrices uses about
k3 operations. (Refer to Chapter 9 for a discussion of faster algorithms
for matrix multiplication.) Thus it might seem to take t k3 operations to
compute M t, but the technique of repeated squaring (also called fast

7.1 Homogeneous Matrix Equations 181

exponentiation) can save many of these operations. For example, M16 can
be computed by computing M2, then squaring to get M4, then squaring M4

to get M8, and squaring M8 to get M16. In general, M t can be computed
using at most 2 log t (here log means the base-2 logarithm) matrix products
by using repeated squaring, and as soon as 2 log t is less than t, repeated
squaring uses fewer arithmetic operations. Further, 2k3 log t < k2t for large
enough t, and for such t, matrix exponentiation by repeated squaring uses
fewer operations than the matrix–vector product method.

Another method for computing M t comes from the Cayley–Hamilton
Theorem (refer to Appendix C), which says that the characteristic poly-
nomial chM (x) is a polynomial whose degree is k such that chM (M) = 0.
This implies that there is a polynomial p(x) of degree at most k such that
p(M) = 0. Such a polynomial with lowest degree is called the minimal
polynomial for M , and we symbolize this polynomial as minM (x). For
some matrices (like companion matrices) the characteristic polynomial is
the minimal polynomial, but for other matrices (like the identity matrices)
the minimal polynomial may have much lower degree than the character-
istic polynomial.

We can use M ’s minimal polynomial to compute the powers Mn. Setting
minM (x) = xd − c1x

d−1 − · · · − cd−1x − cd, we have

Md = c1M
d−1 + · · · + cd−1M + cdI ,

and obviously all powers have the form

Mn = c1M
n−1 + · · · + cd−1M

n−(d−1) + cdM
n−d.

The key point here is that this formula can be interpreted as the dth order
one–dimensional difference equation

xn = c1xn−1 + · · · + cd−1xn−(d−1) + cdxn−d

with initial conditions x0 = I, x1 = M , x2 = M2, . . ., xd−1 = Md−1. As
in Chapter 2, the solution to this difference equation can be written in the
form

Mn =
d∑

i=1

Ai φi(n) ,

where the φi(n) are d linearly independent solutions to the recurrence.
What are the Ai’s? In this case, the Ai’s must be matrices, and further,
they must be linear combinations of I, M, . . . , Md−1.

We consider two examples that may help clarify the foregoing argument.
As in Chapter 6, we can represent the Fibonacci recurrence in matrix form
as (

fn

fn−1

)
=

[
1 1
1 0

](
fn−1

fn−2

)

182 7. Matrix Difference Equations

and treat this as a matrix difference equation. We want to compute powers
of

M =
[
1 1
1 0

]
.

Here it is easy to check that M2 = M + I, and so Mn = Mn−1 + Mn−2.
Since λ2 − λ − 1 has two distinct roots, λ1 and λ2, we can write the
solution of this difference equation for Mn as

Mn = A1λ
n
1 + A2λ

n
2

with initial conditions

I = M0 = A1 + A2 ,

M = M1 = A1λ1 + A2λ2 ,

which can be solved to give

A1 =
1

λ1 − λ2
(M − λ2I) ,

A2 =
−1

λ1 − λ2
(M − λ1I) ,

or

Mn =
1

λ1 − λ2
[λn

1 (M − λ2I) − λn
2 (M − λ1I)]

=
λn

1 − λn
2

λ1 − λ2
M +

λn−1
1 − λn−1

2

λ1 − λ2
I

= fnM + fn−1I.

As another example of this method, we use the matrix

M =
[
−4 9
−4 8

]
,

where here minM (x) = chM (x) = x2 − 4x + 4, which means that we want
(any) two linearly independent solutions of

xn = 4xn−1 − 4xn−2 .

It’s easy to verify that

x1(n) = n2n and x2(n) = (n − 1)2n−1

are two linearly independent solutions to our difference equation. Next we
want to find the coefficient matrices A1 and A2 such that

Mn = n2nA1 + (n − 1)2n−1A2.

7.1 Homogeneous Matrix Equations 183

For n = 1, we have M = 2A1, which gives A1 = M/2. For n = 2, we have

M2 = 4M − 4I = 2 · 22A1 + 1 · 21A2 = 4M + 2A2 ,

which gives A2 = −2I. So,

Mn =n2n−1M − (n − 1)2nI ,

Mn =
[
(−3n + 1)2n 9n2n−1

−n2n+1 (3n + 1)2n

]
.(7.3)

Another way to write Mn comes from the Jordan Canonical Form ,
whose salient properties are stated in the following theorem (also refer to
Appendix C).

Theorem 7.1.1. For any complex k× k matrix M , there is a nonsingular
matrix P such that

P−1MP =

⎡⎢⎣J1 0
. . .

0 Jj

⎤⎥⎦ ,

where each block Ji is bidiagonal of the form⎡⎢⎢⎢⎢⎢⎣
λi 1 0 . . . 0
0 λi 1 0 . . . 0

.
1

0 0 0 0 . . . λi

⎤⎥⎥⎥⎥⎥⎦ ,

where λi is an eigenvalue of M . (In the simplest case each Ji is 1 × 1 and
P−1MP is a diagonal matrix.) Moreover, the nth power of an r× r Jordan
block J is the upper triangular matrix

(7.4) Jn =

⎡⎢⎢⎢⎣
λn

(
n
1

)
λn−1

(
n
2

)
λn−2 . . .

(
n
r

)
λn−r

0 λn
(
n
1

)
λn−1 . . .

(
n

r−1

)
λn−(r−1)

. . .
...

0 0 0 . . . λn

⎤⎥⎥⎥⎦ ,

where the (i, j)th entry is (Jn)ij = λn−(j−i)
(

n
j−i

)
for j ≥ i and (Jn)ij = 0

for j < i. (Here
(
n
r

)
is the binomial coefficient n!

r!(n−r)! .)

We will not prove this theorem here. Instead, we focus on how this re-
sult can be used to compute Mn. If D is a matrix with Jordan blocks
J1, J2, . . . , Jr on its diagonal, then

Dn =

⎡⎢⎢⎢⎣
Jn

1

Jn
2

. . .
Jn

r

⎤⎥⎥⎥⎦ ,

184 7. Matrix Difference Equations

and we can write down the exact form of Dn. Also, P−1MP = D, and
rearranging this gives M = PDP−1. So to compute Mn we compute
(PDP−1)n. This is easy because

(PDP−1)2 = PDP−1PDP−1 = PD2P−1

and
(PDP−1)n = PDnP−1.

From above we know how to compute Dn.
Notice that P and P−1 do not depend on n, and so all dependence on

n is in the powers of the Jordan blocks. Thus the entries of Mn are linear
combinations of the entries of the powers of the Jordan blocks. In general,
the Jordan form is difficult to calculate. For most matrices it cannot be
computed exactly. and the approximate calculation is numerically unstable.
In spite of these caveats, the Jordan form method for Mn is useful because
it can be computed for many common examples, and because it allows us
to estimate the growth of Mn.

The Fibonacci example is simple because the matrix M =
[
1 1
1 0

]
has

two distinct eigenvalues, which means that its Jordan form is a diagonal
matrix. The columns of the P matrix are the corresponding eigenvalues,
found by solving the equations

M

(
P11

P21

)
= λ1

(
P11

P21

)
and M

(
P12

P22

)
= λ2

(
P12

P22

)
which give (

P11

P21

)
=

(
λ1

1

)
and

(
P12

P22

)
=

(
λ2

1

)
.

So,

Mn = PDnP−1

=
[

λ1 λ2

1 1

] [
λn

1 0
0 λn

2

][1
λ1−λ2

−λ2
λ1−λ2−1

λ1−λ2

λ1
λ1−λ2

]

=
1

λ1 − λ2

[
λn+1

1 − λn+1
2 λn

1 − λn
2

λn
1 − λn

2 λn−1
1 − λn−1

2

]
=

[
fn+1 fn

fn fn−1

]
.

(Note that we have used λ1λ2 = −1 to simplify the expression.) It is easy
to check that this gives the same values as the previous method, although
the expressions may look a little different.

For our second matrix,

M =
[
−4 9
−4 8

]
,

7.1 Homogeneous Matrix Equations 185

the characteristic polynomial is ch(x) = x2 − 4x + 4, which has the double
root λ = 2. We will show that M is similar to the Jordan block matrix

J =
[
2 1
0 2

]
.

To show this, we solve the eigenvector equation Mz = 2z to get z0 =
(3, 2)T . Since every eigenvector is a multiple of z0, we need to find a gen-
eralized eigenvector y, satisfying My = 2y + z0. This equation has a
solution y = (1, 1)T , and so for

P =
[
3 1
2 1

]

we have MP = PJ , and Mn = PJnP−1, where P−1 =
[

1 −1
−2 3

]
. As in

(7.4), we know that

Jn =
[
2n n2n−1

0 2n

]
.

Multiplying PJ , Jn, and P−1 gives

Mn =
[
(−3n + 1)2n 9n2n−1

−n2n+1 (3n + 1)2n

]
,

which is consistent with our calculation in (7.3).
A comment is in order. These two methods rely on different polynomials.

The first method uses the minimal polynomial, the lowest–degree poly-
nomial that maps the matrix M to the 0 matrix, while the Jordan method
uses the characteristic polynomial. The characteristic polynomial for a
k × k matrix always has degree k, while the minimal polynomial has de-
gree at most k. (In fact, the minimal polynomial is a divisor—a factor—of
the characteristic polynomial.) It happens that these two polynomials are
different when there are at least two Jordan blocks with the same value of
λ. (Refer to [78, Section 7.3].) At this point, a simple example may clarify
this. Consider the k× k identity matrix I, which is already in Jordan form
with k Jordan blocks and each block has λ = 1, the only eigenvalue. Here
the characteristic polynomial is (x − 1)k, but the minimal polynomial is
minI(x) = x − 1, a proper divisor of the characteristic polynomial when
k > 1.

We are now ready to estimate the growth of a solution to a matrix differ-
ence equation. For this we use the Jordan form. When J is a Jordan block
of size r and eigenvalue λ, the largest entry of Jn is

(
n
r

)
λn−r, which has

growth order Θ(nr|λ|n−r). The Jordan form of a matrix consists of diago-
nal Jordan blocks, and each block is raised to the nth power independently
of the other blocks. When D is the Jordan form, Dn has an entry that
grows as Θ(nr|λ1|n−r), where the absolute value of λ1 is maximum among

186 7. Matrix Difference Equations

the absolute values of the eigenvalues and r is the size of the largest Jordan
block that has an eigenvalue of absolute value |λ1|. From Mn = PDnP−1,
the power Mn consists of entries that are linear combinations of the entries
of Dn, and no entry of Mn can grow faster than the fastest–growing entry
in Dn. Unfortunately, this argument does not ensure that Mn has an entry
that grows like the largest entry in Dn because there may be cancellations
that occur in the linear combinations. On the other hand, the largest entry
in Dn is also a linear combination of entries of Mn, so by reversing the
argument we see that at least one of the entries in this sum must be as
large as the largest entry in Dn. This observation gives the following result.

Lemma 7.1.2. The largest entry in Mn obeys max |(Mn)ij | = Θ(nr1 |λ1|n),
where λ1 is the maximum eigenvalue in absolute value and r1 is the size of
the largest Jordan block that has an eigenvalue of absolute value |λ1|. This
means the (i, j)th entry satisfies |(Mn)ij | = O(nr1 |λ1|n).

Let us return to solving equation (7.1). We know that the solution is
Xt = M tX0, and what does this say about the growth of Xt? The actual
growth depends on X0. In essence, X0 can pick out some or all of the Jordan
blocks, and so detailed knowledge is necessary to get the actual growth rate.
But Xt cannot grow faster than M t, and we have the following theorem.

Theorem 7.1.3. The growth of a solution to a matrix difference equation
can be bounded from above so that |xi(t)|, max |xi(t)|, and |

∑
αixi(t)| are

all O(nr1 |λ1|n), where λ1 is the maximum eigenvalue in absolute value and
r1 is the size of the largest Jordan block that has an eigenvalue of absolute
value |λ1|.

7.2 Nonnegative Matrix Equations

For the special type of a nonnegative matrix M , the matrix difference
equation Xt+1 = MXt is as simple as the Leslie equations of Chapter 6,
and so they are not much more complicated than scalar equations. These
special nonnegative matrices have the property that there is a power M t in
which every entry is strictly positive, which we will write as M t � 0, and
M is called primitive. The associated matrix equation is relatively simple
to solve because of the Perron–Frobenius Theorem.

Theorem 7.2.1 (Perron–Frobenius). If M is a primitive matrix, then:

(a) M has a positive real eigenvalue λ0 of maximum modulus;
(b) λ0 is a simple root of the characteristic polynomial;
(c) for every other eigenvalue λi, λ0 > |λi| (it is strictly dominant);
(d) mini

∑
j mi,j < λ0 < maxi

∑
j mi,j ,

minj

∑
i mi,j < λ0 < maxj

∑
i mi,j;

7.2 Nonnegative Matrix Equations 187

(e) the row and column eigenvectors associated with λ0 are strictly posi-
tive;

(f) the sequence M t is asymptotically one–dimensional, its columns con-
verge to the column eigenvector associated with λ0, and its rows con-
verge to the row eigenvector associated with λ0;

(g) λ0 = max |Mx|/|x|, where |x| is the Euclidean norm |x| =
√∑

x2
i .

We will not prove this theorem; proofs appear in many places, including
[7, Chapter 2] and [146, Chapter 1].

7.2.1 Applications to Markov chains

An important application of nonnegative matrices is Markov chains, which
are used as models in the biological, physical, and social sciences. The idea
of a Markov chain is simple: It has a finite set of states with a set of
probabilities that describe how a state transitions to other states. Often,
the states are assumed to have certain initial probabilities, and one asks
how this probability distribution evolves in time and what its asymptotic
distribution will be.

We illustrate this with a Markov chain that has three states called 1,
2, and 3. The probability of being in state i is pi, and the probability of
transitioning among the states is given by

P (t + 1) =

⎡⎣1/2 1/3 0
1/2 1/3 1/2
0 1/3 1/2

⎤⎦P (t) = M P (t) ,

where P (t) is the current vector of probabilities and P (t + 1) is the next
vector of probabilities. Notice that each column of the matrix M sums to
1, and that ensures that the probabilities in each P (t) sum to 1. These
transitions can also be represented by the following labeled graph:

v1 v2 v3
1
3

1
2

1
2

1
3

1
2

1
3

1
2

We want to find the long-term behavior of this chain, that is, to calculate
limt→∞ M tP (0). Since we expect this behavior to be independent of the
initial distribution P (0), we compute limt→∞ M t.

188 7. Matrix Difference Equations

It is a simple matter to compute the characteristic polynomial for this
M , chM (λ) = λ3 − 8

6λ2 + 1
4λ + 1

12 . By the Cayley–Hamilton Theorem, M
satisfies its characteristic polynomial, so for general t we have

M t =
1
12

(16M t−1 − 3M t−2 − M t−3) ,

a linear homogeneous difference equation with eigenvalues 1, 1/2, −1/6.
Therefore, any solution M t can be expressed as a (matrix) linear combina-
tion of powers of these roots,

M t = C1 (1)t + C2 (1/2)t + C3 (−1/6)t ,

where the matrices C1, C2, C3 depend on the initial conditions. Since the
initial conditions are I, M , and M2, we expect C1, C2, C3 to be linear
combinations of I, M , and M2. Writing these out in expanded form, we
have

M t = (c12M
2 + c11M + c10I)(1)t

+ (c22M
2 + c21M + c20I)(1/2)t

+ (c32M
2 + c31M + c30I)(−1/6)t ,

where the cij ’s are scalars. At first glance it seems we have a problem,
because there are 9 unknown coefficients but only 3 initial-condition equa-
tions. However, the initial conditions are matrices, and when I, M , and
M2 are linearly independent, we really have 9 equations in scalars. For
example, the matrix equation from the first initial condition gives

I =M0 = 0 · M2 + 0 · M + 1 · I
=(c12M

2 + c11M + c10I)(1)0

+ (c22M
2 + c21M + c20I)(1/2)0 + (c32M

2 + c31M + c30I)(−1/6)0 ,

where the linear independence of I, M, M2 in this example allows us to
equate coefficients of like powers to get

0 = c12 + c22 + c32, 0 = c11 + c21 + c31, 1 = c10 + c20 + c30 .

Therefore, each equation in matrices becomes, in this example, three equa-
tions in scalars. It is easy to solve for the cij ’s and obtain

M t =
1
7
(12M2 − 4M − I)

−
(1

2

)t+1

(6M2 − 5M − I)

+
1
14

(−1
6

)t

(18M2 − 27M + 9I).

7.3 Graphs and Matrices 189

Taking limits drives both (1
2)t+1 and (−1

6)t to 0, and so

lim
t→∞ M t =

1
7
(12M2 − 4M − I) ,

which is

lim
t→∞M t =

1
7

⎡⎣2 2 2
3 3 3
2 2 2

⎤⎦ .

Several important results should be noted:

1. The limiting M t is a matrix of rank 1.

2. Regardless of the initial probability distribution, the limiting distri-
bution is (2/7, 3/7, 2/7)T = (p1, p2, p3)T .

3. λ0 = 1 is a strictly dominant positive eigenvalue of M .

4. The column eigenvector corresponding to 1 is (2/7, 3/7, 2/7)T .

5. The row eigenvector corresponding to 1 is (1, 1, 1).

Since M2 � 0, many of these results could have been obtained directly
from the Perron–Frobenius Theorem.

7.3 Graphs and Matrices

Many problems about nonnegative matrices can be solved by translating
the problem to a problem about graphs. Graphs are objects that consist
of vertices and edges between some of these vertices. Small graphs can be
represented by diagrams that can be visually inspected for various prop-
erties. Often these visual operations can be codified as algorithms, which
then can be used to determine properties of graphs that are too large to
be conveniently drawn. In many cases, these graph-based algorithms can
determine properties of the original matrix more quickly than algorithms
based on matrix operations.

More formally, a (directed) graph G = (V, E) consists of a finite set
V of vertices and an edge set E, where E ⊆ V × V , and the (directed)
edge (vi, vj) goes from vertex vi to vertex vj . The graph associated
with the nonnegative matrix M of size n × n is G(M) with vertex
set V = {v1, v2, . . . , vn} where the directed edge (vj , vi) is in E exactly
when Mi,j = 0 1. A nonnegative matrix M in which all non-zero entries
are replaced by 1’s is called the adjacency matrix for G(M).

1While (vj , vi) corresponding to Mi,j may seem backwards, it is the natural definition
when matrix M times vector X is computed as MX.

190 7. Matrix Difference Equations

EXAMPLES:

M1 =
[
0 1
0 0

]
, G(M1) = v1 v2

M2 =
[
1 0
1 2

]
, G(M2) = v1 v2

This correspondence between a nonnegative matrix and a graph gives
a correspondence between matrix multiplication and paths in the graph,
where a path from vi to vj is a sequence of vertices vi, vi1, vi2, . . . , vir , vj

that starts at vi, ends at vj , and for each vertex in the sequence there is an
edge to the next vertex in the sequence. The path length is the number
of edges in the path, which is one less than the number of vertices in the
path. For the above graphs, in G(M1) there is a path of length 1 from v2 to
v1. In G(M2) there is a path v1, v1, v2, v2 of length 3 from v1 to v2. Notice
also that G(M1) has no paths of length 2 or greater. Our paths allow a
vertex or an edge to be repeated even several times. Paths that do not
have repeated vertices are called simple paths.

Let us consider matrix multiplication. The row times column rule tells
us that if C = AB, then

cij =
∑

k

aikbkj .

Specializing this formula to the special case in which both A and B are the
same nonnegative matrix M gives

cij =
∑

k

mikmkj .

When is cij non-zero? By our assumption that M is nonnegative, each sum-
mand is the product of two nonnegative numbers and hence is nonnegative.
So the only way for cij to be 0 is for every summand to be 0. In our graph
interpretation this means that there is an edge vi ← vj in G(C) exactly
when there is at least one k such that there is an edge vi ← vk and an
edge vk ← vj in G(M). Said another way, there is an edge vi ← vj in G(C)
exactly when there is a path of length 2 from vj to vi in G(M).

This observation tells us that the powers of the matrix M contain in-
formation about the existence or nonexistence of paths in G(M). An even
stronger relationship can be shown if we assume that M is a 0-1 matrix,
a nonnegative matrix in which all positive entries are 1. For a 0-1 matrix
M ,

∑
k mikmkj counts the number of paths of length 2 from vj to vi in

G(M). This result can be generalized as stated in the following lemma.

7.3 Graphs and Matrices 191

Lemma 7.3.1. Let M be a 0–1 matrix. Then the (i, j)th entry of the Lth

power of M counts the number of paths of length L from vj to vi in the
associated graph G(M).

Notice that paths rather than simple paths are counted. For example, for
the graph

v1 v2 v3

we have

M =

⎡⎣0 1 0
1 0 1
0 1 0

⎤⎦ , M3 =

⎡⎣0 2 0
2 0 2
0 2 0

⎤⎦ ,

and M3 counts the paths of length 3. In particular, (M3)21 = 2 says that
there are two paths of length 3 from v1 to v2. These (nonsimple) paths are

v1 −→ v2 −→ v1 −→ v2

and
v1 −→ v2 −→ v3 −→ v2 .

We can naturally replace each positive entry with a 1 to convert a non-
negative matrix to the 0–1 matrix that is the adjacency matrix for the
graph G(M). As in the above lemma, matrix multiplication using natural-
number arithmetic counts the number of paths. However, in order to study
the existence or nonexistence of paths between pairs of vertices it is easier
to use Boolean OR as addition and Boolean AND as multiplication.
For the remainder of this section our matrices will be Boolean; that is,
0–1 matrices with Boolean operations.

Other matrix properties also correspond to graph properties. A graph is
strongly connected if for all pairs of vertices vi, vj there is a path from
vi to vj . Since this statement specifies a property for all vertices, it implies
that there is also a path from vj to vi, but there is no assurance that the
path from vi to vj has the same length as the path from vj to vi. For
example, in the strongly connected graph

v1 −→ v2

↑ ↓
v4 ←− v3

there is a path of length 1 from v1 to v2, but the length of any path from
v2 to v1 is at least 3.

What matrix property corresponds to strong connectedness in the asso-
ciated graph? We have already seen that the entry (ML)ij is positive iff

192 7. Matrix Difference Equations

there is a path of length L from vj to vi. So, the existence of a path of
length at most K between every pair of vertices corresponds to

K∑
L=0

ML � 0.

(Recall that A � 0 means that every entry of the matrix A is positive.)
This formula suggests that an infinite amount of work is involved in using
matrices to check for strong connectedness. However, we are lucky, because
whenever there is a path from vj to vi, there is a relatively short path, of
length at most (n−1), from vj to vi, and our condition can be amended to

G(M) is strongly connected ⇐⇒
k∑

L=0

ML � 0 , for some k ≤ n − 1 .

This form suggests a calculation for k = n − 1 using n − 2 matrix mul-
tiplications and n − 1 matrix additions, but the calculation can actually
be carried out with fewer matrix operations. For this we need to look at
the calculation slightly differently. One way to recast the calculation is to
notice that for any positive integers c0, c1, . . . , cn−1,

(7.5)
k∑

L=0

ML � 0 iff
k∑

L=0

cLML � 0 .

Which cL’s should we choose to make our calculation easier? Because the
matrices M and I commute, a type of Binomial Theorem holds:

(M + I)k =
k∑

L=0

(
k

L

)
MLIk−L =

k∑
L=0

(
k

L

)
ML.

Therefore, choosing cL =
(

k
L

)
in (7.5) gives

k∑
L=0

ML � 0 iff (M + I)k � 0 ,

where (M + I)k can be computed relatively easily by fast exponentiation.
This calculation can be further simplified by using k = 2r for r = �log2(n−
1)�, and r matrix multiplications (squarings) suffice. Thus, whether a graph
is strongly connected can be decided in time O(T (n) log n), where T (n) is
the time to compute the product of two n×n matrices. (We’ll discuss ma-
trix multiplication algorithms more fully in Chapter 9.) The best currently
known value for T (n) is O(nα), where α ≈ 2.38 (see [29, 28] for details), and
this matrix method therefore decides strong connectedness in O(nα log n).

7.3 Graphs and Matrices 193

7.3.1 Next node representation

A matrix may have many zero entries, which can be considered to corre-
spond to non-edges, edges that do not exist in the graph. A more compact
representation might avoid representing these non-edges and represent only
edges that actually exist. Concentrating on one vertex v, the edges from
v tell us which vertices can be reached from v in one step. So, we could
represent a graph by a collection of sets with one set for each vertex v;
namely, the set that contains the vertices that can be reached in one step
from v. The adjacency matrix of the graph actually is such a representa-
tion, because the column corresponding to the vertex w is a bit vector
representation of the set of vertices that can be reached in one step from
w. (A bit vector represents a subset of {1, . . . , n} by a 0–1 vector with n
components, where j is in the subset iff the jth bit in the vector is 1.)
The matrix representation uses n2 bits. Is a more compact representation
possible? Yes, when there are not too many edges. This new representation
is called the next node representation. For each vertex v there is a list,
and each item in the list is a vertex that can be reached from v in one
step. There is a separate next node list for each vertex. Since the vertices
have labels from {1, . . . , n}, the name of each vertex can be represented
in O(log n) bits. Because there is one item in this array of lists for each
edge in the graph, the whole structure can be represented in O(|E| log n)
bits, where |E| is the number of edges in the graph. When the implied con-
stants are ignored, the next node representation is smaller than the matrix
representation, provided |E| is less than n2/ log n.

We’d like to use this next node representation to determine strong con-
nectedness more quickly. When a graph is strongly connected, for any vertex
v there is a path from v to every vertex and also a path from every vertex to
v. Conversely, if there is a vertex v such that there is a path from v to every
vertex and also a path from every vertex to v, then the graph is strongly
connected. The reason for this is that for any pair of vertices, say w and
z, there is a path from w to v and a path from v to z, and following these
two paths in order gives a path from w to z. These observations suggest a
strong connectedness algorithm. Pick an arbitrary vertex v and do a search
to find all the vertices that can be reached (with a path of any length)
from v, and then do a “backward” search to find all the vertices that can
reach v. By “reach” we mean that there is a path in the graph that can be
followed from the starting vertex to the vertex to be “reached”.

With the next node representation these searches are easy. One starts at
any vertex v and puts all of the next nodes of v into a structure. Then one
takes a vertex, say w, from the structure and puts into the structure all of
w’s next nodes that have not previously been put into the structure. This
search halts when the structure is empty. The search is a success if each
vertex has been put into the structure. It is easy to keep track of which
vertices have been in the structure by using a bit array.

194 7. Matrix Difference Equations

This sort of search can be done in O(|E|) time if we assume that check-
ing and putting a vertex into the structure are unit operations. For the
forward search, the next node representation suffices, and we can find the
next node to place in the structure by following a pointer and then check-
ing the bit array to determine whether this node has already been put in
the structure. For the backward search, a previous node representation is
needed. Of course, this previous node representation is just the next node
representation for the graph in which every edge vi −→ vj has been turned
around into the edge vi ←− vj . This can be computed quickly by run-
ning through the next node list for v say, and putting v on the previous
node list for each w that is on the next node list of v. At the end of these
two searches one has to check that all vertices have been found, and a bit
vector representation for found vertices makes these checks easy. Overall,
each search costs O(|E|), and there are two O(n) checks. So, assuming that
|E| > n, strong connectedness can be determined in O(|E|) time.

In Section 7.4 we will show that this sort of “graph thinking” leads to
an efficient algorithm to determine whether a matrix is primitive.

7.3.2 Comments on imprimitivity

We are interested in primitive matrices, because by the Perron–Frobenius
Theorem the difference equations associated with such matrices asymptoti-
cally have one–dimensional behavior for nonnegative initial conditions. This
is the same result we found for Leslie matrices in Theorem 6.6.1. We also
saw that if the characteristic polynomial of a Leslie matrix is not primitive,
then it is asymptotically periodic with period g = gcd{i|fi > 0}. For exam-
ple, if A is a 6×6 Leslie matrix in which all survival rates equal 1 and whose
only positive fertility rates are f2 and f6, then chA(x) = x6−f2x

2−f6 = 0
and g = 2. The graph corresponding to A is

v1 v2

v3 v4

v5 v6

and the graph corresponding to A2 is

7.3 Graphs and Matrices 195

v1 v2v3 v4

v5 v6

These graphs tell us that the population decomposes into two separate
populations, one consisting of the odd-numbered components and one con-
sisting of the even-numbered components. If we use the original matrix,
these two populations change places at each step: the odds become evens
and the evens become odds. On the other hand, if we use the square of the
original matrix, the populations remain separate: the odds stay as odds and
the evens stay as evens. Using the squared matrix corresponds to looking
at the populations at every two time units instead of looking at them at
every time step. For our example, squaring the original 6 × 6 matrix and
taking only the components in odd rows and odd columns gives the 3 × 3
matrix ⎡⎣f2 0 f6

1 0 0
0 1 0

⎤⎦ .

The same 3×3 matrix is obtained by taking only the even rows and columns.
These matrices are identical because the survival rates are all 1. If unequal
survival rates are used, these matrices are

⎡⎣s1f2 0 s5f6

s1s2 0 0
0 s3s4 0

⎤⎦ and

⎡⎣s1f2 0 s1f6

s2s3 0 0
0 s4s5 0

⎤⎦ ,

which look slightly different, but they have the same characteristic polyno-
mial, x2(s1f2 − x).

In what follows, we call a matrix strongly connected if its graph is
strongly connected. In general, if a strongly connected matrix M is not
primitive, then the matrix Mg decomposes into g primitive matrices, where
g is the greatest common divisor (gcd) of the cycle lengths in the graph
G(M). This decomposition is not as regular as the decomposition for Leslie
matrices. In particular, the number of vertices in each component need not
be the same, and the decomposition does not have to be periodic across
the indices of the matrix. For example, the graph

196 7. Matrix Difference Equations

1 2

3

4 5 6 7

is strongly connected with g = 3. The third power of the corresponding
matrix decomposes using the three sets of indices {1, 5}, {2, 6}, {3, 4, 7}.
The graphs for this decomposition are

1 2

3 4

5 6
7

and the corresponding decomposed matrices are

[
+ +
+ 0

]
,

[
+ +
+ 0

]
,

⎡⎣+ 0 +
+ 0 +
0 + 0

⎤⎦ ,

where the +’s indicate the positive entries.
Nonnegative matrices can also fail to be primitive because they are not

strongly connected. For Leslie matrices this is no great problem. If an n×n
Leslie matrix has fk with k < n for its last positive fertility rate, then one
can analyze the k×k submatrix with the first k rows and the first k columns.
If this k × k matrix is primitive, then its powers converge as specified by
the theorems for Leslie matrices in Chapter 6. The last n − k columns of
the n×n matrix converge in n−k steps to columns consisting solely of 0’s.
The first k components in the solution vector X converge as usual for a
k×k Leslie system. The last n−k components of X converge like the first k
components, but these last components are also multiplied by appropriate
products of survival rates. The periodic Leslie case is similar. If g is the
index of imprimitivity, using the gth power of the Leslie matrix decomposes
the system into g Leslie systems with k × k aperiodic submatrices. These
systems behave as just described.

7.3 Graphs and Matrices 197

The case for general nonnegative matrices is, unfortunately, more compli-
cated, because there are a myriad of ways in which primitive and periodic
blocks may be connected. Let us discuss some of these possibilities in terms
of the graphs associated with the matrix. Of course, this short description
is insufficient to give more than a flavor of the possible complications. In
a simple situation, the graph may be disconnected, with a partition of the
vertex set into several subsets in which there is no path from a vertex in
one subset to a vertex in another subset. In this situation, the disconnected
components can be analyzed separately. But a strange thing can happen.
One of the components could have an oscillation of period p, while another
could have an oscillation of period q. Viewed together as a single system,
there is an oscillation of period lcm(p, q). This multiplication of periods
makes it possible for a system to have a period much greater than the sys-
tem’s dimension. This is very different from strongly connected systems, in
which the period of any oscillation must divide the dimension.

Let us now consider the connected case, in which there is a path in at
least one direction between every pair of vertices. For example, the graph
v1 −→ v2 is connected, since there is a directed path from v1 to v2. Of
course, this example is only connected and not strongly connected. To
analyze connected graphs, we make use of the equivalence relation that
specifies that two vertices vi and vj are equivalent iff there is a directed path
from vi and vj and a directed path from vj and vi. The partition induced
by this equivalence relation breaks the graph into strongly connected
blocks, where the vertices in a block and the edges within a block form a
strongly connected graph. We construct a new graph that has as its vertices
these strongly connected blocks and that has an edge from block Bi to
block Bj iff there is a vertex in Bi that has an edge to a vertex in Bj . This
new graph is called a DAG, a directed acyclic graph, because it has no
directed cycles (every directed cycle is inside a block) and the edges between
blocks have direction. Two special kinds of blocks need to be singled out:
the sources and the sinks. A source is a block with no in-coming edges,
whereas a sink is a block with no out-going edges. In any system, the initial
conditions determine which blocks are important. A block is active if the
initial condition for at least one component in the block is positive. (Recall
that we are dealing only with nonnegative systems with nonnegative initial
conditions.) A block is eventually active if either the block is initially
active or there is a directed path to the block from an initially active block.
Of particular interest are the eventually active sinks. In analogy with fluid
flow, we expect the sinks to contain all of the asymptotic behavior. If we
consider the initial conditions to be an initial distribution of fluid in various
containers corresponding to blocks, we expect the fluid to flow downhill
and end up in the sinks. Certainly, if a block consists of a single vertex
with an out-going edge, we expect the fluid to flow out of this chamber.
Of course, there might be an in-coming flow that would keep fluid in the
chamber, but we expect that all fluid eventually flows out. When a block

198 7. Matrix Difference Equations

has cycles, we expect the fluid to flow around these cycles. But if there
is an out-going edge, we expect some fluid to flow out, and even the part
of the fluid that is recirculating should eventually hit the out-going edge
and flow out. So, at least asymptotically, we expect the eventual behavior
of the system to be determined by the eventually active sinks. As before,
this set of sinks behaves as a disconnected system (unless there is only
one eventually active sink), and we can analyze the behavior as we did for
disconnected systems. There is one thing wrong with this picture. It is valid
only in restricted situations since the analogy to fluid flow makes sense only
if fluid is neither created nor destroyed. If we assume that our system is
a Markov chain, then the fluid flow analogy does make sense, because the
total probability always remains equal to 1. Even in the Markov case we
have passed over some difficulties. The asymptotic probability distribution
within a sink depends only on the submatrix for the sink if that submatrix
is primitive, but the probability of being in a particular sink depends on
the initial conditions over the whole system. Further, when the sink is
periodic, the maximum period is determined by the sink’s submatrix, but
the actual period depends on the initial conditions across the whole matrix.
If the system is not a Markov chain, then blocks can have eigenvalues
larger than 1, which correspond to the creation of fluid, and some vertices
may lack out-edges, and self-loops, which correspond to the destruction
of fluid. The analysis of such systems have to take into account both the
graphical properties of the matrix and the actual numerical values in the
matrix. So, we leave such systems with the comment that their analyses
are complicated.

7.4 Algorithms for Primitivity

In this section we investigate algorithms for determining whether a non-
negative matrix is primitive.

7.4.1 Algorithm I

The most straightforward algorithm for primitivity is based on the obser-
vation that if a power of a nonnegative matrix is positive then all higher
powers are also positive. Using graph theory, we show that the (n− 1)2 +1
power of any primitive matrix is strictly positive.

Theorem 7.4.1. If A is a primitive n × n matrix and m0 is the least
nonnegative integer m such that Am � 0, then m0 obeys

m0 ≤ (n − 2)l + n ≤ (n − 1)2 + 1 ,

where l is the length of the shortest cycle in the graph G(A).

7.4 Algorithms for Primitivity 199

Proof. If n = 1, then A = [a11] with a11 > 0, and the corresponding
graph consists of a single vertex with a self-loop. For such a graph, l = 1.
Since A0 = [1], the formulas are correct. We next note that for n > 1,
l = n implies that A is a permutation matrix and so cannot be primitive.
Therefore, we may assume that n > 1 and l ≤ n − 1.

Consider a cycle of length l . Since the graph is strongly connected and
l < n, there is a vertex v on this cycle that has an edge to a vertex not
on this cycle. Because A is primitive, for every large enough m there is a
path of length m between every pair of vertices, and in particular, m can
be taken in the form il + 1. Let Si be the set of all vertices that can be
reached from the vertex v in exactly il + 1 steps. Clearly, |S0| ≥ 2 and
S0 ⊆ S1 ⊆ · · · ⊆ Sn. Also, if Si+1 = Si, then Si+2 = Si+1 = Si. Therefore,
either |Si| = n or

2 ≤ |S0| < |S1| < · · · < |Si| .

This implies |Sn−2| = n, and every vertex is reachable from v in (n−2)l +1
steps. If y is any vertex, strong connectedness implies the existence of an
in-coming edge from some x to y. Since x is reachable from v in (n−2)l +1
steps, y is reachable from v in (n − 2)l + 2 steps. From this argument we
see that for every j ≥ 1 every y is reachable from v in (n − 2)l + j steps.
To go from any vertex x to any vertex y, one can go from x to v and then
go from v to y. But there is a path of length at most n − j ≤ n − 1 from
x to v, which means that one can go from x to y in n − j + (n − 2)l + j
steps. This gives the first upper bound. The second upper bound follows
from l ≤ n − 1.

So the (theoretically) simple algorithm is to compute A(n−1)2+1 and
check to see whether all entries in this computed matrix are positive. The
analysis of this algorithm is also simple. Matrix multiplications are the most
time-consuming part, so let M(n) be the time to compute the product of
two n × n matrices. If we compute the power of A by simple powering as
in

POWER := A
FOR I := 1 TO (n − 1)2 DO

POWER := A × POWER

then our algorithm uses O(n2) matrix multiplications, and its time com-
plexity is O(n2M(n)). But most of these multiplications can be avoided by
fast exponentiation (repeated squaring), in which POWER is multiplied by
POWER rather than by the original matrix A.

200 7. Matrix Difference Equations

POWER := A
I := 1
WHILE I < (n − 1)2 + 1 DO

I := 2 × I
POWER := POWER × POWER

In the last procedure, the power of A is doubled on each execution of the
WHILE loop. So, if the loop is executed j times, then POWER contains
A2j

and I contains 2j. From the loop condition, we have 2j ≥ (n− 1)2 + 1
and 2j < 2(n−1)2. So 2 log(n−1)+1 > j > 2 log(n−1), and the repeated
squaring method has time complexity O(log nM(n)), which is superior to
O(n2M(n)).

At this point we should say more about M(n), the time complexity of
multiplying two n×n matrices. The classical row-times-column algorithm
uses Θ(n3) arithmetic operations (additions and multiplications). Is this
the best possible? That depends on what kind of entries are in your ma-
trices and on what kind of operations you are allowed to use. As we saw
earlier, when we are trying to determine if a power of a nonnegative ma-
trix is positive, it might be reasonable to change the matrix to a Boolean
matrix by writing 1 for each positive entry and using Boolean addition and
multiplication, corresponding to OR and AND. When the operations on
scalars are restricted to AND and OR it is known that (refer to [112, V. 2,
pp. 159–168]) any computer program for (Boolean) matrix multiplication
with no branching has time complexity Ω(n3) and the classical method is
the best possible! (If one allows branching, the Four Russians’ algorithm
computes the logical product of two matrices in O(n3/ logn) time. See Aho,
Hopcroft, Ullman [2].)

This may require a small explanation. So far the operations OR and
AND, or addition and multiplication, are monotone in the sense that X ≥
Y =⇒ f(X) ≥ f(Y) where X and Y are vectors. If ≥ is defined on the
scalars, we can extend the ordering from scalars to vectors by requiring
that the scalar ordering hold on each component of the vectors. Notice
that even if the scalar ordering is a total ordering, the vector ordering may
only be (and usually is) a partial ordering. For example, {0, 1} is totally
ordered by ≥ defined as

0 ≥ 0, 1 ≥ 0, and 1 ≥ 1 ,

but extending this ≥ to vectors gives

0
0 ≥ 0

0
0
1 ≥ 0

0
1
0 ≥ 0

0
1
1 ≥ 0

1
1
1 ≥ 1

0 ,

7.4 Algorithms for Primitivity 201

and does not specify any relationship between

0
1 and 1

0.

Similarly, when the usual ordering ≥ on the reals is extended to vectors,
we get (

x1

x2

)
≥

(
y1

y2

)
iff x1 ≥ y1 and x2 ≥ y2 ,

and there no relationship for x1 > y1 and y2 > x2. When we discuss the
usual sort of operations for f , X and Y are vectors with two components
and f(X) and f(Y) are scalars, so we could rewrite the monotonicity con-
dition as

x1 ≥ y1 and x2 ≥ y2 =⇒ f(x1, x2) ≥ f(y1, y2) .

For example,

x1 ≥ y1 and x2 ≥ y2 =⇒ (x1 OR x2) ≥ (y1 OR y2) .

Now the question is: Will using nonmonotonic operations allow matrix
multiplication to be calculated more quickly? The answer is YES, as shown
by Strassen [156] in 1969. (We will return to Strassen’s method in Chapter
9.) He showed that by using the nonmonotonic operation of matrix sub-
traction he could produce a divide-and-conquer algorithm for matrix mul-
tiplication that uses only seven half-size multiplications, rather than the
eight half-size multiplications in a divide-and-conquer algorithm that uses
only addition and multiplication. Strassen’s algorithm has time complexity
Θ(nlog 7). A number of researchers have found very clever ways to further
reduce the complexity of matrix multiplication. At present, the best algo-
rithm has time complexity Θ(nα), where α is less than 2.4 [29, 28]. These
faster matrix multiplication methods could be used to produce a faster al-
gorithm for determining whether a matrix is primitive. Of course, to use
the methods requiring subtraction, computation must be carried out in the
integers. While this adds some complexity because the size of the integers
could increase, it can be shown that the increase is not very significant.

Are these “faster” methods practical? Since complexity analysis is only
asymptotic, it is very possible that a “faster” method is slower than stan-
dard methods for all reasonably sized problems. For Strassen’s method,
n > 1000 is needed to be competitive with the classical method. For other
nonmonotonic methods, much larger values of n seem to be needed for
there to be any speedup over the classical method. On the other hand,
the Four Russians’ method may be competitive for reasonable values of
n (say, n ≈ 100) if some of the operations are implemented as bit vector
operations.

202 7. Matrix Difference Equations

7.4.2 Algorithm II

After all this talk about matrix multiplication, are there other methods
for testing primitivity that don’t use matrix multiplication? Yes, there are
methods that are based on the calculation of graph properties. The basic
technique used in these methods is depth-first search. 2 In this technique,
one explores all edges in a graph by following each edge leading to an
unused vertex and backing up when there are no edges to unused vertices.
The complexity of depth-first search is O(|E|), where |E| is the number of
edges in the graph. In our matrix application, |E| is the number of positive
entries in the matrix, and so O(|E|) is O(n2).

To determine whether a directed graph is strongly connected, two depth-
first searches are performed: one on the graph and one on the reversed
graph. (Recall that in the reversed graph each directed edge is turned
around so that the tail of the original edge becomes the head of the new
edge, and the head of the original edge becomes the tail of the new edge.)
The graph is strongly connected iff both these searches find all the vertices,
which means that strong connectedness can be tested in O(|E|).

If M is nonnegative and a power Mk is strictly positive, the correspond-
ing graph has at least one path of length k between every pair of vertices.
In particular, for every vertex there is a cycle of length k from that vertex
back to itself. Further, since Mk+1 must also be strictly positive, there is
a cycle of length k + 1 around each vertex. These observations lead to the
following theorem.

Theorem 7.4.2. A nonnegative matrix M is primitive iff the correspond-
ing graph G(M) is strongly connected and has two relatively prime cycle
lengths.

Proof. Since k and k + 1 are relatively prime, the above observations show
the only if part. For the if part, if there are two relatively prime cycles,
every positive integer greater than some integer B can be represented as a
positive linear combination of the lengths of these two cycles. (See Exercise
5.5.) Since the graph is strongly connected, there are paths between every
pair of vertices. We claim that there exists a path of length k = 3(n−1)+B
(where the graph has n vertices) between any pair of vertices. This will show
that Mk is strictly positive. A path from any v to any w can be constructed
by going from v to a vertex x1 on the first cycle, then around this cycle
as many times as you like, then from x1 to some vertex x2 on the second
cycle, then around the second cycle as often as you want, and finally from
x2 to w. The paths from v to x1, x1 to x2, and x2 to w have total length
at most 3(n − 1). Remember that any number greater than or equal to B
can be created by sums of the two given relatively prime cycle lengths, and

2A breadth-first search could be used here in place of the depth-first search.

7.4 Algorithms for Primitivity 203

so going around the two cycles the appropriate number of times results in
a path of length 3(n − 1) + B = k. This proves Mk � 0.

Perhaps it is easy to misread this theorem. It does not say that there are
two simple cycles whose lengths are relatively prime. For example, you can
construct (refer to Exercise 7.2) a strongly connected graph on 20 vertices
that has only three simple cycles, of lengths 6, 15, and 20. Although this
graph does not have two relatively prime simple cycles, the corresponding
matrix is still primitive, because you can produce a cycle of length 21 by
going around the 6-cycle and the 15-cycle. The correct corollary is the
following:

Corollary 7.4.3. A nonnegative matrix is primitive iff the corresponding
graph is strongly connected and the gcd of the lengths of its simple cycles
is 1. (We call such a graph a primitive graph.)

The relatively prime cycle lengths may be relatively large and hard to
find. Because of this, our strategy is to find some small simple cycles and
then to check whether the gcd of their lengths is 1. Ideally, we would find
the lengths of all simple cycles, but this seems computationally difficult.
In particular, determining whether an n-vertex graph has a simple cycle
of length n is the famous Hamiltonian circuit problem (refer to [68]),
which is known to be NP–complete. So, our procedure looks for any short
cycles, not just simple ones.

We start by picking an arbitrary vertex v, and then doing a backward
search and a forward search from v. As seen above, this pair of searches
checks whether the graph is strongly connected because each vertex appears
in both the forward search and in the backward search iff the graph is
strongly connected.

Once we know that the graph is strongly connected, we need a procedure
for finding cycle lengths. Consider our search to be breadth-first, so for each
vertex we can talk of a successor set of vertices and a predecessor set of
vertices. For each vertex w, let P (w) be the length of the shortest path
from w to a fixed vertex v. Since there is a path of length 0 from v to v,
we initialize with P (v) = 0, and P (w) is calculated by doing a backward
breadth-first search from v, which can be done in O(|E|). For the forward
search, define S0 = {v} and inductively calculate

Si+1 = Succ(Si) − Already Visited Vertices .

Of course, here we are using Succ(X) to mean the set of vertices that can
be reached by a path of length 1 (an edge) from a vertex in the set X .
We remove the Already Visited Vertices so that edges are not repeated
and also so that this forward search can be accomplished in O(|E|) time.
For each w ∈ Succ(Si) put P (w) + i + 1 into the set of cycle lengths C.
We now will argue that the gcd of the final (finite) set C is the gcd of all
cycle lengths. For this we use the ± closure of a set C of natural numbers.

204 7. Matrix Difference Equations

This closure, denoted by C±, is the smallest set that both contains C and
is closed under additions and differences. This means that if a ∈ C± and
b ∈ C±, then both a + b and |a − b| are in C±.

Lemma 7.4.4. If C is a finite set of natural numbers, then gcd(C) =
gcd(C±) holds. Also, if g is this common value, then C± = gN; that is, C±

consists of all nonnegative multiples of g.

Proof. The elements of C± can be assigned types indicating the least num-
ber of operations needed to create the element from the original elements
in C. Elements of C are type-0 elements of C±, and x is an element of type
K if x = a + b or x = |a − b|, where one of a and b has type K − 1 and
the other has type at most K − 1. By hypothesis, g is the gcd of type-0
elements. Assume that g is the gcd of elements of type at most K − 1. If g
divides both a and b, then g also divides their sum and their difference, and
hence g divides all elements of type at most K. Because adding elements
to a set cannot increase the gcd, g must be the gcd of elements of type
at most K. Since every element of C± has finite type, then gcd(C±) = g.
Why is C± = gN? First of all, since g = gcd(C±), all elements of C± are
multiples of g. On the other hand, by the Euclidean Algorithm we know
that g ∈ C±, and by closure under addition all positive multiples of g must
then be in C±. (Closure under subtraction guarantees that 0 is in C±.)

We will prove that all cycle lengths are in C±, where C is the output
of our primitivity algorithm. Then this will allow us to find the greatest
common divisor of all cycle lengths by calculating gcd(C).

Lemma 7.4.5. If C is the set of numbers found by the primitivity algo-
rithm then every cycle length is in C±, and therefore gcd(C) is the greatest
common divisor of all cycle lengths.

Proof. Consider any cycle, simple or not simple, and let v1, v2, . . . , vL be
the ordered list of the vertices in this cycle of length L. For every vi, there
is an edge vi −→ vi+1 mod L. If P (vi) is the position at which vi is found in
the backward search, and Q(vi) is the position at which vi is first found in
the forward search, then both

P (vi) + Q(vi) and P (vi+1) + Q(vi) + 1

have been put into C, because from the edge vi −→ vi+1 mod L, the vertex
vi+1 is found on the step after vi. Since C± is closed under addition and
differences, the following natural number must be in C±:∣∣∣ L∑

i=1

[P (vi+1) + Q(vi) + 1] −
L∑

i=1

[P (vi) + Q(vi)]
∣∣∣ .

But this sum is L, the cycle length, and we’ve proved that every cycle
length must be in C±.

7.4 Algorithms for Primitivity 205

Theorem 7.4.6. If C is the set of numbers found by the primitivity algo-
rithm, then a strongly connected graph is primitive iff gcd(C) = 1.

Proof. From the discussion before the last result, it is enough to recall that
from Theorem 7.4.2 we know that a strongly connected graph is primitive
iff the gcd of its cycle lengths is 1.

To complete an analysis of this algorithm we need to look at the com-
plexity of calculating the gcd of a set of numbers. A naive way to compute
the gcd is to begin with the two smallest numbers, use the Euclidean Al-
gorithm to find their gcd, and replace these two elements with their gcd.
This process can be applied recursively to the remaining set, and there are
O(n) calls to the Euclidean Algorithm when n is the size of the set. If all
elements are less than 2n (as they are in our set C), each call to the Eu-
clidean Algorithm could use O(log n) divisions, and in total this procedure
is O(n log n). This is an overestimate. On each division, either the division
is exact (and the larger number is eliminated) or one of the numbers is
decreased. In fact, if the division is not exact, then the smaller number
is at least halved in every two divisions. Since the smallest number has
only log n bits, it is reduced to 1 once there are 2 logn divisions that are
not exact. This means that the gcd of an n-subset from {1, . . . , 2n} can be
computed in O(n) time. Coupled with the above this gives the following
two theorems.

Theorem 7.4.7. Whether an n vertex graph is primitive can be determined
in Θ(|E| + n), where |E| is the number of edges in the graph.

Theorem 7.4.8. Whether an n×n nonnegative matrix is primitive can be
determined in Θ(n2). Except for an initial scan of the matrix, the algorithm
runs in Θ(|E|), where |E| is the number of non-zero entries in the matrix.

We finish this section with a couple of comments. It seems that if a graph
has many edges, then the graph is most likely primitive. For instance, with
some effort one could calculate a constant γ and then show that the graph
must be primitive if |E| > γn2. It can also be shown [10] that there is a
constant α such that if each vertex has at least α log n edges, then the graph
is almost surely primitive when the edges are assigned at random. Finally,
our algorithm lets us pick v. Which v should be chosen? A reasonable choice
is to choose the v with the largest number of edges. In graphs that arise in
modeling, the structure of the graph may allow a fast proof of primitivity
without even using our algorithm. The point of all these comments is that
our complexity estimates may be overestimates.

206 7. Matrix Difference Equations

7.5 Matrix Difference Equations with Input

In the previous sections of this chapter we have considered matrix difference
equations of the form

Xt+1 = MXt.

These are called homogeneous because multiplying each component of
Xt by α results in each component of Xt+1 being multiplied by α. The
solutions to such equations also satisfy the additive property in that if
Xt+1 = MXt and Wt+1 = MWt, then Zt = Xt + Wt also satisfies Zt+1 =
MZt. (Notice that while the recurrence stays the same under addition, the
initial conditions change, because if X0 = C and W0 = C, then Z0 =
X0 + W0 = 2C = C if C is non-zero.) Homogeneous difference equations
are used to model systems with no input, where the current state of the
system depends only on the previous state of the system. In contrast, other
systems are better described by nonhomogeneous equations, because the
state of the system depends on an input as well as on the internal workings.
For example, the states of a sewage system depend on what is fed into the
system as well as on the internal processing within the system.

We describe nonhomogeneous systems by a matrix difference equation of
the form

(7.6) Xt+1 = MXt + Yt ,

but in many fields more complicated models are used. For example, control
engineers often use a pair of equations,

Xt+1 = MXt + BYt

Zt+1 = CXt + DYt ,

where Xt is the internal state, Yt is the input, and Zt+1 is the output.
They then ask such questions as what input sequence produces a desired
output sequence. Of course, even more complicated models (including non-
linear models) are used in a variety of fields. Here we restrict ourselves to
equations in the form of (7.6).

Our first result is a trivial observation, which may seem surprising.

Theorem 7.5.1. If Xt+1 = MXt + Yt, then the input sequence Yt can be
chosen so that the solution is any desired sequence.

Proof. If X0 is the initial condition and X1 is the next desired value, taking
Y0 = −MX0 + X1 gives MX0 + Y0 = MX0 − MX0 + X1 = X1. Similarly,
if Xt was the last value and Xt+1 is the next desired value, taking Yt =
−MXt + Xt+1 gives Xt+1 the desired value.

This result may seem surprising because linear systems are so simple
that they should have very limited possibilities, and therefore it’s surprising

7.5 Matrix Difference Equations with Input 207

that every desired sequence can be produced from a linear system. On the
other hand, the result is trivial because it says that if you can produce
any desired input sequence (any Yt), then you can pass your constructed
sequence (which contains all the complexity) through a linear system and
obtain whatever you like. The linear system does not add any complexity
or flexibility; rather, you had that when you were constructing the input
sequence.

A major virtue of linear systems is that we can write down their solution.
The solution to (7.6) with initial condition X0 is

Xt = M tX0 +
t−1∑
i=0

M t−1−iYi.

Notice that this is formally the same as the solution to the first–order
one–dimensional difference equation

xt+1 = axt + yt,

but the symbols are now vectors and matrices. This change is significant
because the order of operands is now important. For example, a k × k
matrix times a k × 1 vector must be multiplied in the order matrix times
vector. Of course, this form of solution is purely formal and doesn’t really
tell us much about how the solution behaves. After we give the solution,
we must add some hypotheses about the structure of the matrices and the
growth of the input sequence in order to get some bounds on the behavior
of the solution.

7.5.1 Reduction to one dimension

General multi–dimensional systems are difficult to analyze, but linear sys-
tems have such nice additive properties that we can hope that multi–
dimensional linear systems are not much more complicated than one–dimensional
linear systems. We will show that a multi–dimensional linear system can in
fact be decomposed into a set of one–dimensional linear systems. We start
with a special case that often arises in practice.

Theorem 7.5.2. The k–dimensional linear difference equation

Xt+1 = MXt + Yt

can be decomposed into the set of one–dimensional difference equations

x̂1(t + 1) = λ1x̂1(t) + ŷ1(t) ,

x̂2(t + 1) = λ2x̂2(t) + ŷ2(t) ,

...
x̂k(t + 1) = λkx̂k(t) + ŷk(t) ,

208 7. Matrix Difference Equations

if the matrix M has a basis of eigenvectors. Here, the λ1, . . . , λk are the
eigenvalues and the x̂’s and ŷ’s are linear combinations of the components
of X and Y respectively.

Proof. If Z is a (column) eigenvector of M , then MZ = λZ, where λ is the
corresponding eigenvalue. When M has k linearly independent eigenvectors
Z1, Z2, · · · , Zk with corresponding eigenvalues λ1, λ2, · · · , λk, then

M [Z1Z2 · · ·Zk] = [Z1Z2 · · ·Zk]

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0

. . .
0 0 . . . λk

⎤⎥⎥⎥⎦ .

(Here [Z1Z2 · · ·Zk] is the k×k matrix whose ith column is the ith eigenvec-
tor.) The equation holds because postmultiplying a matrix by a diagonal
matrix results in multiplying each component of the ith column by the ith

entry on the diagonal. Putting this in matrix form, we have

MZ = ZΛ ,

where Z is the matrix of eigenvectors and Λ is the diagonal matrix of eigen-
values. Since the eigenvectors are linearly independent, Z is an invertible
matrix and

Z−1MZ = Λ and M = ZΛZ−1.

Replacing M in the matrix equation gives

Xt+1 = ZΛZ−1Xt + Yt ,

and multiplying by Z−1 gives

(Z−1Xt+1) = (ΛZ−1Xt) + (Z−1Yt).

So setting X̂ = (Z−1X) and Ŷt = (Z−1Yt) (which are linear combinations
of X and Y) gives

X̂t+1 = ΛX̂t + Ŷt.

Because Λ is diagonal, each component of this equation is independent of
the other components, and so we can write the k–dimensional difference
equation as a set of k one–dimensional difference equations.

Once a matrix difference equation has been reduced to its one–dimensional
form, the methods in earlier chapters can be used to find the solutions to
these equations. Re-assembling these component solutions into a vector and
multiplying by the matrix Z gives the solution Xt to the matrix difference
equation.

This reduction can also be described in terms of the eigenvectors and
generalized eigenvectors of M . As we observed in Section 2.4, a matrix

7.5 Matrix Difference Equations with Input 209

also has row eigenvectors, by which we mean a row vector R such that
RM = λR, where λ is the corresponding eigenvalue. Starting with the
equation

(7.7) Xt+1 = MXt + Yt,

we can multiply by a row eigenvector R to obtain

RXt+1 = RMXt + RYt .

Since r(t) = RXt is one–dimensional, we obtain the one–dimensional re-
currence

r(t + 1) = λ r(t) + RYt

with solution

r(t) = λt r(0) +
t−1∑
j=0

λt−1−jRYt .

If M has a basis of eigenvectors, the solution Xt to (7.7) can be written
as a linear combination of the solutions to a set of one–dimensional linear
equations. In fact, if V1, . . . , Vk are the column eigenvectors of M , then

Xt =
k∑

i=1

ri(t) Vi ,

where each ri(t) is the solution to one of the one–dimensional equations
(with associated row eigenvector Ri) and the column vector Vi is normalized
so that RiVi = 1.

This special situation often arises in modeling physical systems because
the laws of physics often lead to real symmetric matrices and such matrices
always have a basis of eigenvectors. Recall that such matrices are diago-
nalizable, which means that they are similar to a diagonal matrix. When
the matrix is not diagonalizable, the above method fails, but we can fall
back on using the Jordan Canonical Form for the matrix. (See Section 7.1
and Appendix C.) Performing the above construction with the Jordan form
leads to a set of difference equations of the form

X̂t+1 =

⎡⎢⎢⎢⎢⎢⎣
λ 1 0 . . . 0
0 λ 1 . . . 0

.
1

0 0 0 . . . λ

⎤⎥⎥⎥⎥⎥⎦ X̂t + Ŷt .

This means that every matrix difference equation decomposes into a set
of matrix difference equations in which the matrices are Jordan blocks.
Each Jordan block is similar to a companion matrix whose characteristic

210 7. Matrix Difference Equations

polynomial is (x − λ)r, where r is the size of the block (see Exercise 7.13),
which means that any matrix (even with entries in a general field) is similar
to a blockwise companion matrix. (We’ve seen this before in Section 2.3.2,
and the basis in Corollary 2.3.5 records the similarity transformation.) A
blockwise companion matrix that is similar to M is called a Rational
Canonical Form for M . The reason we’ve used the article “a” rather
than “the” here is that Rational Canonical Form is not unique, but rather, a
matrix can be similar to a variety of rational forms. (See Exercise 7.12.) The
next theorem uses a divisibility condition on the characteristic polynomials
of the companion matrices to identify one type of Rational Canonical Form.
Of course, one can choose other relations on the characteristic polynomials
to obtain a different Rational Canonical Form. (Refer to [78, Sections 7.1–
7.2].)

Theorem 7.5.3 (Rational Canonical Form). A square matrix M is
similar to a block companion matrix⎡⎢⎢⎢⎣

C1

C2

. . .
Ck

⎤⎥⎥⎥⎦
in which the sequence of characteristic polynomials is a divisor sequence,
which means that each element divides the next element of the sequence.
Recall that a companion matrix C has the form⎡⎢⎢⎢⎢⎢⎣

c1 . . . cr

1 0
1

. . .
1 0

⎤⎥⎥⎥⎥⎥⎦ ,

with characteristic polynomial chC(x) = xr − c1x
r−1 − · · · − cr.

This is a very powerful theorem, because it applies to matrices with
entries in any field and because all operations used to convert a matrix
to Rational Canonical Form are rational operations in the field. This is in
sharp contrast to the Jordan Canonical Form which requires one to find
the roots of polynomials. This is difficult to do for many reasons, including
the fact that some polynomials do not have roots in the field. For instance,
one may start with a rational or real matrix and have to go to complex
matrices in order to obtain the Jordan form, and even then, some roots may
not be expressible by an algebraic formula. Although Rational Canonical
Form always exists, it may not be easy to find. Algorithms for this problem
are known (for example, refer to Harrison [75]), but none is straightforward
enough to be included here. However, knowledge of the existence of Rational
Canonical Form can be used to obtain the following result.

7.5 Matrix Difference Equations with Input 211

Theorem 7.5.4. Any k–dimensional matrix difference equation can be
reduced to a one–dimensional difference equation whose order is at most k.

We do not prove this result in general, but instead give an idea of how
Rational Canonical Form could be used to prove it. Under the similarity
that transforms the matrix into its rational decomposition, the original
difference equation is changed into a set of matrix difference equations in
which all matrices are in companion form. To see how a companion ma-
trix difference equation can be decomposed into one–dimensional difference
equations, let us simply consider a 3 × 3 example, the companion matrix
for the polynomial x3 − c1x

2 − c2x − c3. The component equations for the
matrix difference equation are:

x1(t + 1) =c1x1(t) + c2x2(t) + c3x3(t) + y1(t) ,

x2(t + 1) =x1(t) + y2(t) ,

x3(t + 1) =x2(t) + y3(t) .

From this,

x3(t) = x2(t − 1) + y3(t − 1) , where x2(t − 1) = x1(t − 2) + y2(t − 2)

and so
x3(t) = x1(t − 2) + y2(t − 2) + y3(t − 1) ,

which gives

x1(t + 1) = c1x1(t) + c2[x1(t − 1) + y2(t − 1)]
+ c3[x1(t − 2) + y2(t − 2) + y3(t − 1)] + y1(t)

= c1x1(t) + c2x1(t − 1) + c3x1(t − 2)
+ c2y2(t − 1) + c3y2(t − 2) + c3y3(t − 1) + y1(t) ,

a third–order one–dimensional difference equation. The other components
are just shifted versions of the sequence 〈x1(t)〉 with some of the input
sequence added. For example,

x3(t) = x1(t − 2) + y2(t − 2) + y3(t − 1) ,

which is a trivial difference equation in which its output, x3(t), is equal to
its input because x3 does not appear on the right side of the equation.

7.5.2 Reduction to homogeneous form

The matrix difference equation (7.7) can be reduced to homogeneous form
if the input is well-behaved. Specifically, if there is a homogeneous matrix
difference equation Zt+1 = AZt and Yt = PZt, then (7.7) can be rewritten
as Xt+1 = M Xt, where

Xt+1 =
(

Xt+1

Zt+1

)
=

[
M P
0 A

](
Xt

Zt

)
.

212 7. Matrix Difference Equations

This allows one to write the solution to (7.7) as

Xt = Q Mt

(
X0

Z0

)
,

where Q is the k–dimensional projection matrix that returns the first k
components of its input vector. This reduction replaces a nonhomogeneous
equation by a homogeneous equation at the cost of increasing the size of
the matrices in the homogeneous equation.

Since the new matrix M has a special form, we can hope that computing
powers of M may be easier than computing powers of a general matrix. If
the matrices M and A do not have any eigenvalues in common, then an
easier computation is possible. If Vi is an eigenvector or generalized eigen-
vector of M , then (V T

i , 0T) is a corresponding eigenvector or generalized
eigenvector of M. Similarly, if Uj is an eigenvector or generalized eigenvec-
tor of A corresponding to the eigenvalue λj , and if λj is not an eigenvalue

of M , then there exists a vector V̂i such that (V̂i
T
, UT

j) is a corresponding
eigenvector or generalized eigenvector of M. The assumption that λj is not
an eigenvalue of M is needed to ensure that (M − λjI)m is a nonsingular
matrix, and hence that the linear equation for V̂i has a solution. These
considerations give the following result.

Theorem 7.5.5. If M and A have no eigenvalues in common then a so-
lution to

Xt+1 = MXt + Yt

can be written in the form

Xt =
k∑

i=1

αit
miλt

iVi +
k2∑

j=1

βjt
mj γt

jUj .

7.6 Exercises

Ex 7.1. Let

M =
[
−4 9
−4 8

]
.

Use the two solutions x1(n) = n2n−1 and x2(n) = 2n to find an expression
for Mn. Compare your result to that found in (7.3).

Ex 7.2. Construct a graph on 20 vertices that has only three simple cycles,
of lengths 6, 15, and 20. Find the least k such that there is a path of length
k between every pair of vertices. Construct the corresponding matrix M
and show that k is the least positive exponent such that Mk � 0.

7.6 Exercises 213

Ex 7.3. Let A be a 10 × 10 Leslie matrix in which f6 is the last posi-
tive fertility rate. Assume that the initial population is x1 = x2 = x3 =
x4 = x5 = x6 = 0 , x7 = 100 , x8 = 100 , x9 = 90 , x10 = 10 . Find the
asymptotic population vector for Xt+1 = AXt.

Ex 7.4. Let A =

⎡⎣0 0 2
1 0 0
0 1 0

⎤⎦ and X0 =

⎛⎝1
0
0

⎞⎠. Calculate the asymptotic

population vector for Xt+1 = AXt. How does this calculation reflect the
remarks about imprimitive matrices?

Ex 7.5. Let g be the gcd of the cycle lengths for a nonnegative strongly
connected matrix. Is Mg primitive? Does Mg decompose into a set of prim-
itive submatrices?

Ex 7.6. Given the following graph, determine the gcd g of the cycle lengths,
and find the decomposition of the graph into g disconnected subgraphs.

v1

v2 v3

v4 v5 v6

v7v8v9

Ex 7.7. Let Xt+1 = MXt with M =

⎡⎣ 0 0 0
1/3 0 1
2/3 1 0

⎤⎦. Find the graph for

this system. Find the DAG for this graph. Is the system a Markov chain?
Is it periodic? Find the solution for X0 = (x1(0), x2(0), x3(0))T and give
initial conditions that lead to an asymptotic fixed point.

Ex 7.8. Let Xt+1 = MXt with M =

⎡⎢⎢⎣
0 0 + 0
+ 0 0 0
0 + 0 +
+ 0 0 0

⎤⎥⎥⎦. Draw the graph

and DAG for this system. Find the period g of the system and show how
Mg decomposes into subsystems.

Ex 7.9. Let Xt+1 = MXt with M =

⎡⎣0 2 0
1 0 0
1 0 1

⎤⎦. Find the graph and

DAG for this system. Let X0 = (x1(0), x2(0), x3(0))T and find

lim
t→∞

X2t

2t
.

214 7. Matrix Difference Equations

Compare this to the predicted asymptotic behavior based on a graphical
analysis.

Ex 7.10. Let Xt+1 = MXt where M =

⎡⎢⎢⎢⎢⎣
0 1 .1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 .9 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦. Draw the

graph and DAG for this system. Is this a Markov chain? Predict the asymp-
totic behavior by a graphical analysis. Use a computer to follow the evo-
lution of Xt starting from various nonnegative initial conditions. Do the
computed results for Xt agree with your predictions?

Ex 7.11. A graph is in Leslie normal form iff it has n vertices v1, v2, . . . , vn

and for all i, vi → vi+1 mod n and all other edges have the form vj → v1; that
is, all other edges go to v1. (Multiple edges are not allowed, but a self-loop
v1 → v1 is allowed.) Two strongly connected graphs are g-equivalent iff
the gcd of the set of cycle lengths is the same for each graph. Two strongly
connected graphs are c-equivalent iff the set of cycle lengths for the two
graphs is the same.

(a) Is every strongly connected graph c-equivalent to a graph in Leslie
normal form?

(b) Is every strongly connected graph g-equivalent to a graph in Leslie
normal form?

(c) If every strongly connected graph is equivalent to a graph in Leslie
normal form, is the Leslie graph unique? If not, how many Leslie
graphs are equivalent to a given strongly connected graph?

(d) Is there a minimum Leslie graph equivalent to a given strongly con-
nected graph?

(e) If there is such a minimum Leslie graph, does it have a special form?

Ex 7.12. Show that a matrix may be similar to more than one blockwise
companion matrix.

Hint: Consider the effect of various vectors on the matrix
[
1 1
0 2

]
.

Ex 7.13. Show that a k×k Jordan block is similar to a companion matrix
whose characteristic polynomial is (x−λ)k where λ is the eigenvalue of the
Jordan block.
Hint: Consider the effect of this companion matrix on the eigenvectors and
generalized eigenvectors.

Ex 7.14. When λi is a simple eigenvalue of the matrix M , show that the
solution to

Xt+1 = MXt

can be written as
Xt = aλt

iC + Yt ,

7.6 Exercises 215

where C is the column eigenvector for λi, R is the row eigenvector for λi,
a = (RX0)/(RC), and Yt is a non-zero vector such that RYt = 0. (Compare
this with Theorem 2.4.2.)

Ex 7.15. Let Xt+1 = MXt with M =

⎡⎣3 −3/2 −1/2
1 0 0
3 −2 0

⎤⎦. Find the eigen-

values of the matrix and use them to predict the asymptotic behavior of
solutions to the difference equation. Find the solution for the initial value
vector (2, 0, 0)T . Compare this solution to the solution with initial value
vector (1, 1, 1)T . Find the companion form and the Jordan form for the
matrix and use them to explain the differences between the two solutions.

Ex 7.16. Write the following coupled pair of difference equations as a
matrix difference equation

sn = 2tn−1 + sn−2 , tn = −sn−1 + tn−2 .

(What size matrix do you need?) Show that all solutions to these equations
have periods that divide 8. Solve the initial value problem with initial values

s0 = 1 , s1 = 0 , t0 = 0 , t1 = 1 .

Compare your solution to the solution found in Exercise 4.20.

Ex 7.17. Let Xt+1 = HXt where H =

⎡⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎦. Show that H

has only two eigenvalues but four linearly independent eigenvectors. Show
that the solution obeys

Xt =

{
2tX0 if t even,

2t−1X1 if t odd,

where X1 = HX0. Give some initial conditions such that X1 is very differ-
ent from X0.

Ex 7.18. Let Xt+1 = MXt with M =

⎡⎣5 3 2
3 2 1
2 1 1

⎤⎦. Find the eigenvalues

and eigenvectors of the matrix M and use them to predict the asymptotic
behavior of solutions to the difference equation. Show that if X0 � 0, then
Xt = Θ(λt

0), where λ0 is the unique positive eigenvalue of M . More strongly,
show that if X0 � 0, then limt→∞(Xt − λt

0 E1) = 0, where ME1 = λ0E1.
Show that for all X0, limt→∞(Xt − λt

0 E1) = 0, where ME1 = λ0E1, but
for some X0’s one must take E1 = 0.

216 7. Matrix Difference Equations

Ex 7.19. Let Xt+1 = MXt with M =

⎡⎣ 2 −1 0
−1 2 −1
0 −1 2

⎤⎦. Find conditions

under which Xt = Θ((2 +
√

2)t) and conditions under which Xt = Θ(2t).

Ex 7.20. Show that exactly one of the following two statements holds for
a strongly connected graph on n vertices:

(a) The graph is primitive and there is a vertex v such that the lengths
of all cycles of length ≤ n that contain v have gcd = 1.

(b) The graph is not primitive and for all vertices v the lengths of all
cycles of length ≤ 2n − 1 that contain v have gcd > 1.

Use this result to create an algorithm that takes a strongly connected graph
as input and decides whether the graph is primitive. Show that your algo-
rithm has complexity O(n|E|) for a graph with n vertices and |E| edges.

Ex 7.21. Let Xt+1 = MXt + Yt with Yt+1 = MYt. If M has a basis of
eigenvectors V1, . . . , Vk, show that every solution Xt can be written as

Xt =
k∑

i=1

(αi t + βi)Vi ,

where the αi’s depend only on the initial conditions for Yt.

8
Modular Recurrences

In this chapter we consider recurrences modulo a fixed positive integer.
For any positive integer m ≥ 2, the output of the operation of reducing
an integer modulo m (which we usually refer to as mod m) is the remain-
der after division by m, where the remainder is chosen to lie in the set
{0, 1, . . . , m − 1}. For instance, computing a few terms of the Fibonacci
sequence mod 6 gives

(8.1) 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, . . . ,

where each term is the “mod 6 sum” of the two previous terms. We are
interested in answers to the following types of questions:

• Is this sequence periodic or eventually periodic mod 6?

• What is its period?

• What is the largest period of a sequence that satisfies the Fibonacci
recurrence mod 6?

• How many different sequences satisfy this recurrence mod 6?

The first question has a fairly quick answer, which we give in the next
section. If we have only basic properties of modular arithmetic at our dis-
posal, answers to the other questions can be quite complicated. Instead of

218 8. Modular Recurrences

using only these basic properties, we give a more sophisticated yet accessible
point of view, which will shed light on the general structure of recurrences
mod m and provide straightforward answers to these questions. We end the
chapter with applications of modular recurrences to pseudorandom number
generation and to factorization of integers.

8.1 Periodicity

There’s no apparent pattern in the first few terms of the Fibonacci numbers
mod 6 as listed in (8.1). Continuing further into the sequence,

(8.2) 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, . . . ,

we see that the initial pair 1, 1 recurs. Because it is obtained from a second–
order recurrence, the sequence will repeat once the initial pair occurs again.
Even without listing any elements of the sequence, we know that because
there are only 36 different pairs of elements mod 6, at least one repetition
of a pair must occur within the first 37 terms of the sequence. A rewording
of this is helpful. Let X be the set of all ordered pairs of integers mod 6,
and let f be the Fibonacci function mod 6 defined on X by

(8.3) f(x, y) = (y, x + y mod 6) ,

where the second coordinate is specified to be the least nonnegative re-
mainder mod 6, and so f(x, y) is a function on X . Since there are only
62 different pairs of integers mod 6, any list of 37 consecutive pairs in a
sequence defined by the second–order recurrence mod 6 must contain a re-
peated pair. This argument holds for any second–order recurrence mod 6
with any pair of initial values.

Putting this in a general context: For a function f defined on a set X ,
we will use f (n) to denote the nth iterate of f ,

f (n) =

n times︷ ︸︸ ︷
f ◦ f ◦ f ◦ · · · ◦ f ,

and the orbit of x ∈ X is the sequence

x, f(x), f (2)(x), f (3)(x) , f (4)(x), . . . ,

the sequence formed by starting with the value x and applying f again and
again. If there is some n > 0 such that f (n)(x) = x, the orbit of x is called a
periodic orbit, x is called a periodic point, and its period is the least
positive t such that f (t)(x) = x. When t = 1 holds, x is called a fixed
point. From (8.2) we see that (1, 1) is a periodic point of the Fibonacci
function mod 6, and its period is 24.

8.1 Periodicity 219

The orbit of a periodic point with period t can be visualized as forming
a closed loop that returns to its starting point after t iterations of the
function f . Sometimes an orbit might get into a loop without returning
to its initial value. (Refer to Figure 8.1.) We will call x an eventually

f (2)(x)

f (2)(x)

f (3) (x)
Periodicx

f(x)

Eventually Periodic

x

f(x)

FIGURE 8.1. Periodic and Eventually Periodic Orbits.

periodic point if there exists an integer t such that f (n+t)(x) = f (n)(x)
holds for all sufficiently large n, and the smallest such t is its period. Notice
that under this definition every periodic point is also eventually periodic.

For example, for the function f(x) = −x2 + 2x + 1 on the set X = Z

the orbit of x = 0 is the sequence 0, 1, 2, 1, 2, 1, 2, . . ., and x = 0 is an
eventually periodic point of f that is not periodic, and both x = 1, 2 are
periodic points of f . For each of these three values of x the period is two.

Theorem 8.1.1. If f is a function on a finite set X, then every element
of X is an eventually periodic point of f , and its period is at most the
number of elements in X. If f is a one-to-one function on any (not nec-
essarily finite) set, then every eventually periodic point of f is periodic. In
particular, if f is a one-to-one function on a finite set, then every element
of X is a periodic point of f .

Proof. If X has n elements, the set {x, f(x), . . . , f (n)(x)} contains n + 1
elements from X and so must contain a duplicate, say f (i)(x) = f (j)(x) for
some 0 ≤ i < j ≤ n. Then

f (i+1)(x) = f(f (i)(x)) = f(f (j)(x)) = f (j+1)(x) ,

...

f (i+k)(x) = f (j+k)(x) for all k ≥ 0 .

Therefore, for m ≥ i,

f (m+(j−i))(x) = f (j+(m−i))(x) = f (i+(m−i))(x) = f (m)(x) ,

and we see that x is an eventually periodic point whose period is at most
j − i ≤ n.

220 8. Modular Recurrences

Suppose f is one-to-one and the period of x ∈ X is t. Then there exists
a minimal N such that f (n+t)(x) = f (n)(x) for all n ≥ N . To show that x
is periodic, we prove that N = 0. If N were non-zero, then we would have

f(f (N−1)(x)) = f (N)(x) = f (N+t)(x) = f(f (N+t−1)(x)) ,

and the fact that f is one-to-one would give f (N−1)(x) = f (N−1+t)(x). This
is a contradiction to the assumed minimality of N , and N = 0 must be
true.

For general integer m ≥ 2, the Fibonacci function mod m (also called a
modular Fibonacci function) is

F (x, y) = (y, x + y mod m) .

Since this is a one-to-one function on the ordered pairs of integers mod
m, and the set of integers mod m is finite, the previous result gives the
following corollary.

Corollary 8.1.2. Each modular Fibonacci function has a periodic orbit
for every pair of initial values.

Let’s compute the period of the Fibonacci sequence mod m for four more
values of m:

m = 2 : 1, 1, 0, 1, 1, . . . , whose period is 3;
m = 3 : 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, . . . , whose period is 8;
m = 4 : 1, 1, 2, 3, 1, 0, 1, 1, . . . , whose period is 6;
m = 12 : 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5,

9, 2, 11, 1, 0, 1, 1, . . . , whose period is 24.

We have already computed the period mod 6 to be 24, which is the product
of the periods mod 2 and mod 3. Because of this, you might conjecture that
this holds in general, but the period mod 12 is 24 which does not equal
8 · 6. After some deliberation you can see that 24 does equal lcm(8, 6), the
least common multiple (lcm) of 8 and 6. Why the lcm occurs is explained
in the next theorem.

Theorem 8.1.3. Let X = Zk for some k and let f be any function defined
on X. For x ∈ X and positive integers m1, m2, let ti be the period of x
under f modulo mi for each of i = 1, 2. Then lcm(t1, t2) is the period of x
under f modulo lcm(m1, m2).

Proof. Let m = lcm(m1, m2) and L = lcm(t1, t2). If t is the period of x
under f mod m, there exists N such that for all n ≥ N ,

f (n+t)(x) ≡ f (n)(x) (mod m) ,

8.1 Periodicity 221

and since each of m1, m2 divides m, then

f (n+t)(x) ≡ f (n)(x) (mod mi) for alln ≥ N .

Therefore, t must be a common multiple of t1 and t2, and L divides t.
On the other hand, for each of i = 1, 2, there exists Ni such that

f (n+ti)(x) ≡ f (n)(x) (modmi) for all n ≥ Ni. Using N = max{N1, N2}
and the fact that L is a multiple of both t1 and t2, we have that for all
n ≥ N ,

f (n+L)(x) ≡ f (n)(x) (mod mi) .

This means that the difference f (n+L)(x) − f (n)(x) is divisible by each mi

and so also by their least common multiple m, giving

f (n+L)(x) ≡ f (n)(x) (mod m) ,

and x has a period L that is a multiple of t. Since we’ve already shown
that L divides t (and they’re both positive), then L = t.

How do we find the period of the Fibonacci function for a general mod-
ulus? If we happened to know (or could easily find) a factorization of the
modulus into a product of two relatively prime integers m1, m2 (that is,
gcd(m1, m2) = 1), then the theorem could be applied to find the period
mod m. That’s exactly what we noted for m = 12. The following result
follows directly from this observation.

Corollary 8.1.4. If m = pα1
1 · · · pαs

s is the prime factorization of m and ti
is the period of x under f modulo pαi

i , then the period of x under f modulo
m is lcm(t1, . . . , ts).

8.1.1 Periodicity of linear modular recurrences

We’ve been working with functions defined on Zk that are then reduced
mod m, but we could equally well have considered f to be defined on the
set X = Zk

m. (Here Zm means the set {0, 1, . . . , m−1} under the operations
of addition and multiplication mod m.)

As we saw with the Fibonacci recurrence, a kth order linear recurrence
(8.4)

sj+k ≡ c1sj+k−1 + · · · + cksj + ck+1 (mod m), where ck ≡ 0 (mod m),

defines the function

(8.5) S(x1, . . . , xk) = (x2, . . . , xk, ckx1 + · · · + c1xk + ck+1 mod m)

on Zk
m, where the last component is chosen to be the least nonnegative

value of its congruence class mod m. (Notice that we are allowing nonho-
mogeneous equations with the constant forcing term ck+1.)

222 8. Modular Recurrences

Let’s talk a bit more about notation. Normally, when 26 (mod 25) is
written we think of 1, but 26 (mod 25) is of course an infinite set of inte-
gers, all integers that are congruent to 26 modulo 25. We’ve been using the
notation t mod m (as contrasted with t (mod m)) to denote the least non-
negative integer that is congruent to t modulo m. For example, 3 · 9 mod 5
equals 2. Another way of saying this is that 3 · 9 equals 2 in Z5.

The following lemma follows from (8.5) because

S(x1, . . . , xk) = S(y1, . . . , yk) ⇐⇒ x2 = y2, . . . , xk = yk, ckx1 = cky1 .

Lemma 8.1.5. S is a one-to-one function on Zk
m iff ck has a multiplicative

inverse modulo m.

Orbits of S correspond to choices of initial values s0, . . . , sk−1 in the re-
currence (8.4). Since S is a function defined on a finite set with mk elements,
from this lemma and Theorem 8.1.1 we obtain the following result.

Theorem 8.1.6. Each (s0, . . . , sk−1) is an eventually periodic point of S.
Moreover, if ck has a multiplicative inverse modulo m, then every orbit
under S is periodic.

Because every element of Zm has an additive inverse, an element that has a
multiplicative inverse can be referred to as an invertible element without
confusion as to which operation is meant. For the Fibonacci sequence, ck =
1 is of course invertible for every modulus. This means that (regardless
of the initial pair) every modular sequence generated by the Fibonacci
recurrence is periodic.

It can be checked that the orbit of (1, 5) under the recurrence sj+2 ≡
sj+1 + 3sj (mod 18) is

1 , 5 , 8 , 5 , 11 , 8 , 5 , 11, . . . ,

an eventually periodic sequence that is not periodic. Note that this is con-
sistent with the last result, since 3 is not invertible mod 18 and S(5, 8) =
(8, 5) = S(11, 8) shows that S is not one-to-one.

The periodicity of modular recurrences therefore depends only on the
algebraic property of the invertibility of ck. We next describe an efficient
procedure for determining whether an element is invertible, which then
becomes a method for deciding whether a specific modular linear recurrence
is periodic. The procedure is the famous Euclidean Algorithm, which
we’ve already seen several times.1 We used this algorithm in Chapter 6
(and for polynomials in Chapter 4) to compute the greatest common divisor
(gcd) of n-bit numbers in O(n) operations. Because we’re interested in

1The Euclidean Algorithm can be found in the seventh volume of Euclid’s Elements.
A translation of this can be found at
aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html.

8.1 Periodicity 223

using the algorithm to compute more than the gcd, it’s helpful to review
the process here. Recall that the gcd of two non-zero integers a, m (which
we denote by gcd(a, m)) is a positive integer that divides both a and m
and is defined by the property that gcd(a, m) is divisible by all divisors of
both a and m.

Theorem 8.1.7 (Euclidean Algorithm). Let m be any positive integer
and a be any non-zero integer. Then the sequence of divisions

m = q1a + r1; a = q2r1 + r2; r1 = q3r2 + r3; . . .

(where 0 ≤ r1 < a and 0 ≤ ri+1 < ri for all i > 1) ends after finitely many
steps, and the last non-zero remainder rK is gcd(a, m).

Proof. Since the sequence of remainders 〈ri〉 is a strictly decreasing se-
quence of nonnegative integers, it must be a finite sequence, and its last
remainder is zero,

m = q1a + r1; a = q2r1 + r2; . . . ; rK−2 = qKrK−1 + rK ; rK−1 = qK+1rK .

From the definition of gcd, gcd(a, m) = gcd(m−ka, a) holds for all integers
k, and we successively obtain

gcd(a, m) = gcd(m − q1a, a) = gcd(r1, a) = gcd(r1, a − q2r1) = · · ·
= gcd(rK−1, rK−2 − q2rK−1) = gcd(qK+1rK , rK) = rK .

For instance, to compute gcd(437, 12):

437 = 36 · 12 + 5 , 12 = 2 · 5 + 2 , 5 = 2 · 2 + 1 , 2 = 2 · 1 + 0 ,

and gcd(437, 12) = 1 is obtained. Whenever gcd(a, m) = 1 holds, the steps
of the Euclidean Algorithm can be reversed to obtain a−1 (modm). For
instance, successively solving backwards for each remainder in this example
gives

1 = 5 − 2 · 2 = 5 − 2 · (12 − 2 · 5) = 5 · 5 − 2 · 12
= 5 · (437 − 36 · 12) − 2 · 12 = 5 · 437 − 182 · 12
= 5 · 437 − 182 · 12 ≡ −182 · 12 ≡ 255 · 12 (mod 437) ,

and we see that 255 is the inverse of 12 in Z437. This method works in
general and is the basis for the following result.

Theorem 8.1.8. Let m be any positive integer and a be any integer. Then
a is invertible modulo m iff gcd(a, m) = 1.2

2The Euler phi function, φ(m), counts the number of invertible elements modulo m.

224 8. Modular Recurrences

Proof. If a is invertible, there exists x such that ax ≡ 1 (mod m), which
means that ax + my = 1 for some y. Therefore, the gcd must divide 1,
and so equals 1. This proves the only if direction. On the other hand, when
gcd(a, m) = 1 we can “solve the Euclidean Algorithm backwards” to obtain
x, y such that 1 = ax + my, and ax ≡ 1 (mod m).

Combining these results gives a general answer to the first question at
the beginning of this chapter.

Theorem 8.1.9. If S is the function in (8.5), then every orbit of S is
periodic iff gcd(ck, m) = 1. In particular, when the modulus m is prime,
every solution to a linear recurrence modulo m is periodic.

8.1.2 Fast modular computations

In this section we describe Montgomery multiplication, a quick way to com-
pute the product a ∗ b (mod m). The method was first suggested by Peter
Montgomery [115] in 1985. The technique is helpful for implementing mod-
ular exponentiation used in many cryptosystems, for example, in RSA [137]
and in any RSA-type key exchange in other cryptographic methods.

The technique relies on the fact that there are moduli for which arith-
metic is quick, for instance a computer’s machine word size. For any such
modulus r and any m with gcd(m, r) = 1, Montgomery multiplication
translates operations mod m to the faster operations mod r. Articles [166,
58, 167] can be consulted for a discussion of an efficient hardware imple-
mentation of Montgomery multiplication. In particular, [58] claims that
their implementation is twice as fast as the methods previously used for
modular arithmetic. (Refer also to [14].)

We may assume that our factors a and b are greater than 0 and less
than m. We write our modulus m and each of our factors in their base-r
representation, where the digits are indicated by subscripts, for example,
a = a0 + a1r + · · · + akrk, and each ai satisfies 0 ≤ ai < r. Since we are
assuming that 1 = gcd(m, r) = gcd(−m0, r), then −m0 is an invertible
element of Zr and −m0 n ≡ 1 (mod r) for some 1 ≤ n < r. Computing n
is a one-time calculation.

Montgomery multiplication (as given in [58]) involves the calculation of a
sequence R0, R1, . . . , Rk of integers for which P = rk+1Rk equals ab mod m
and 0 < P < 2m. Then either P or P−m is the required product ab mod m.
(Notice that if r is a power of 2, then P can be calculated easily from Rk

by shifting. More general r’s are considered in [167].)
The sequence 〈Ri〉 is inductively calculated in tandem with another se-

quence, which we call 〈Qi〉 . For the choice of Q0 = a0 b0 n mod r, the nat-
ural number a0b + Q0m is divisible by r and is congruent to a0b (mod m).
We set R0 = (a0b + Q0m)/r. Continuing, for Q1 = R0 + a1b0n mod r, it
can be checked that R0 + a1b + Q1m is divisible by r and is congruent to

8.2 Finite Fields 225

a1b (mod m). Setting R1 = (R0 + a1b + Q1m)/r, we have

r2R1 = rR0 + a1rb + Q1mr ≡ a0b + a1rb = (a0 + a1r)b (mod m) .

Here’s the algorithm:

PROCEDURE MULT(a, b)
R := 0
FOR i := 0 TO k DO

Q := (R + aib0) ∗ (−m−1) mod r
R := (R + aib + Qm)/r.

Note that only the least-significant digit of b is needed. Refer to Exercise 8.5
for a justification of the algorithm. Because of the initial investment of time
for the computation of −m−1 mod r and the final adjustment of multiplying
by rk+1, the algorithm is not particularly helpful for calculating just one
product.

8.2 Finite Fields

In this section we begin the study of finite fields, generalizations of the
integers modulo a prime. They provide a more sophisticated context for
investigating modular recurrences. Évariste Galois [66] was the first to use
some properties of finite fields, and the first systematic theory was written
by Leonard E. Dickson in [53]. Because they’re finite, recurrences in finite
fields satisfy the periodicity results proved in Section 8.1.

Let F be a finite set with two operations, + and ∗. Then F is a finite
field under these operations if the following hold:

1. F is an abelian group under +, which means that + is an associative
and commutative operation on F; + has a special identity element
denoted by 0 such that a+0 = a holds for all a ∈ F and each element
a has an (additive) inverse b ∈ F satisfying a + b = 0.

2. The non-zero elements of F form an abelian group under ∗, which
as above means that ∗ is an associative and commutative operation
and has a special identity element denoted by 1 such that a ∗ 1 = a
holds for all a ∈ F and each non-zero element a has a (multiplicative)
inverse b ∈ F satisfying a ∗ b = 1.

3. The operations of + and ∗ are connected by the distributive law,
which means that a1 ∗(a2+a3) = a1∗a2 +a1∗a3 for all a1, a2, a3 ∈ F.

226 8. Modular Recurrences

For example, Z5 = {0, 1, 2, 3, 4} is a field under the operations of addition
and multiplication mod 5, where the additive and multiplicative identities
are respectively 0 and 1; 0 is its own additive inverse; and 1, 2, 3, 4 have
additive inverses 4, 3, 2, 1 and multiplicative inverses 1, 3, 2, 4. The associa-
tive, commutative, and distributive properties are inherited from the set
of integers. Although Z4 = {0, 1, 2, 3} is an abelian group under the oper-
ation of addition mod 4, the fact that gcd(2, 4) = 2 implies that 2 is not
invertible under multiplication mod 4, and Z4 is therefore not a field.

Theorem 8.2.1. Zm is a finite field under the operations of addition mod
m and multiplication mod m iff m is prime.

Proof. As in the two examples above, we observe that the associative, com-
mutative, and distributive properties are all inherited from the integers.
Also, 0 is the additive identity and Zm is an abelian group under addition
mod m. By Theorem 8.1.8, a is invertible mod m iff gcd(a, m) = 1. Ensur-
ing that gcd(a, m) = 1 for all 1 ≤ a < m is equivalent to requiring that m
be prime.

The number of elements in a finite field must be a prime power. (Refer to
Exercise 8.6.)

Let F4 be the set of polynomials {0, 1, x, x + 1}. If we define addition on
F4 to be the usual polynomial addition followed by the reduction of the
coefficients mod 2, it can be checked that F4 is an abelian group under
addition. If we define multiplication as in Table 8.1,

TABLE 8.1. The multiplication table for the field with four elements

∗ 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1
x + 1 0 x + 1 1 x

then 1 is the multiplicative identity, and each of the non-zero elements
1, x, x + 1 has a multiplicative inverse (respectively 1, x + 1, x). The asso-
ciative law for multiplication and the distributive law are tedious to check,
but F4 satisfies these laws.

It’s helpful to examine this example further. In earlier chapters the nota-
tion R[x] meant the set of polynomials with coefficients from R. Likewise,
F[x] will be the set of polynomials with coefficients from a field F. For in-
stance, Z2[x] is the set of all polynomials whose coefficients are either 0
or 1. We’re usually interested not only in a set of polynomials, but also in
its algebraic properties. In F[x] we can define the polynomial operations of
addition and multiplication similarly to the operations in R[x] with the co-
efficients calculated using the operations in F. For example, you can check

8.3 Periods of First–Order Modular Recurrences 227

that when f(x) = x2 + x and g(x) = x3 + x + 1 are considered as elements
of Z2[x], their sum and product are

f(x) + g(x) = x3 + x2 + 1 and f(x)g(x) = x5 + x4 + x3 + x .

This discussion allows us to describe the four-element field F4 above in
another way. Let S be the set of all constant and linear polynomials in Z2[x].
Since S is an abelian group under addition in Z2[x], we have a suitable ad-
dition for S. What about multiplication? The set S is not closed under the
usual polynomial multiplication in Z2, because for instance (x+1)2 = x2+1
is not an element of S. But a slight modification of the usual multiplica-
tion using the polynomial f(x) = x2 + x + 1 (which is not in S) works.
Namely, the product of two elements in S will be defined by first obtain-
ing the product p(x) of the two polynomials as elements of Z2[x] and then
“reducing p(x) mod f(x),” in other words, using the Division Algorithm
in Z2[x] to find the unique remainder when p(x) is divided by f(x). Since
we’re dividing by a quadratic polynomial, the Division Algorithm always
yields a remainder in the set S. For example, x(x + 1) = x2 + x = f(x) + 1
gives the product x∗ (x+1) = 1 in S. (In practice, p(x) mod f(x) is often
computed by repeated subtraction of multiples of f(x) rather than by using
long division.)

This procedure can be generalized to obtain a finite field with pm ele-
ments for any prime p and positive exponent m. The construction relies
on the fact that for every p and m there is an irreducible polynomial
in Zp[x] with deg(f) = m, where irreducible means that f(x) cannot be
factored into polynomials of smaller degree in Zp[x]. The construction and
more information about finite fields can be found in [98, p. 91 ff]. (Also,
refer to Exercises 8.8–8.12 at the end of this chapter.) In particular, for
each choice of prime p and exponent m there is essentially only one finite
field with pm elements. These fields are frequently denoted by GF(pm) and
are the finite Galois fields, named in honor of É. Galois. In what follows
we drop the ∗ symbol for multiplication, and instead use juxtaposition of
elements to denote multiplication. Our proof of Theorem 8.1.9 generalizes
to finite fields.

Theorem 8.2.2. In a finite field every linear recurrence is periodic.

8.3 Periods of First–Order Modular Recurrences

In what follows we will allow R to be either the set of integers mod m
or a finite field and investigate the period of first–order linear recurrences
sj+1 = asj + b in R, where a ≡ 0. We first note that when a = 1, then
sn = s0 + nb and the period of S(x) = x + b is therefore the least integer
t ≥ 1 such that tb = 0 in R. We next consider the case in which a − 1 is
invertible.

228 8. Modular Recurrences

Lemma 8.3.1. Let a be an element of R such that a−1 has a multiplicative
inverse c in R. If 〈sj〉 is a solution to the recurrence sj+1 = asj + b in R,
then

(8.6) sn+j = ajsn + bc(aj − 1) for all n, j .

Proof. For fixed n we prove (8.6) by induction on j ≥ 1. Since c(a−1) = 1
holds in R,

sn+1 = asn + b = asn + bc(a − 1) .

Assuming that (8.6) holds for all 1 ≤ j < J ,

sn+J = asn+J−1 + b = a(aJ−1sn + bc(aJ−1 − 1)) + bc(a − 1)

= aJsn + bc(aJ − a + a − 1) = aJsn + bc(aJ − 1),

completing the proof.

Theorem 8.3.2. Let S be the function defined on R by S(x) = ax + b,
where b is arbitrary and a− 1 is any element of R that has a multiplicative
inverse c in R. Then s0 = −bc is the only fixed point of S, and every s0 ∈ R
is an eventually periodic point of S whose period equals the least integer t
such that (at − 1)(S(n+1)(s0)− S(n)(s0)) = 0 holds for all sufficiently large
n.

Proof. We see that s0 is a fixed point iff as0+b = s0, which can be uniquely
solved for s0 = −bc. From Theorem 8.1.6, every orbit of S is eventually
periodic, and if t is any multiple of the period of s0, then sn+t = sn for
sufficiently large n. By (8.6) this becomes

atsn + bc(at − 1) = sn ,

(at − 1)(sn + bc) = 0 .

Multiplying the last equation by a − 1 gives

0 = (at − 1)((a − 1)sn + b) = (at − 1)(sn+1 − sn).

Because a − 1 is invertible in R, each of these steps is reversible, and we
obtain

sn+t = sn ⇐⇒ (at − 1)(sn+1 − sn) = 0 ,

which completes the proof.

Let us consider orbits of S(x) = 12x + 4 on R = Z21. Since 11−1 = 2,
then −bc = 13 is the only fixed point of S. For instance, the orbits of 1 and
2 are

1, 16, 7, 4, 10, 19, 1, . . . and 2, 7, 4, 10, 19, 1, 16, 7, . . . ,

where 1 is a periodic point, while 2 is eventually periodic. The periods are
the same, but is that only because 7 is a common term of both orbits? In

8.3 Periods of First–Order Modular Recurrences 229

Exercise 8.15 you’re asked to find the periods of other orbits under this
map.

When R is a finite field, the situation is quite simple. Every orbit under
S(x) = ax+ b is periodic, and the period is the same for every initial value.

Theorem 8.3.3. Consider the iteration of S(x) = ax + b in the finite
field F. When a = 1, the period of every orbit is the characteristic of the
field F, the least positive integer n such that the sum of n copies of any
element in F is zero. (Refer to Exercise 8.4.) When a = 1, let c be the
multiplicative inverse of a − 1. Then x = −bc is the only fixed point of S,
and for all other x = −bc the period equals the period of 1 under the linear
function S0(x) = ax. This number is called the order of a in F and will be
denoted by ord(a).

Proof. From our remark before Lemma 8.3.1, the period of S(x) = x + b
is the characteristic of F. For any S(x) = ax + b with a = 1, the orbit of
any s0 = −bc is periodic with period t ≥ 2, which all sm+1 = sm for all
m, and sm+1 − sm is an invertible element of F. Therefore, the condition
in the last theorem becomes at = 1, and the period is t = ord(a).

We can rewrite the fact that ord(a) is the period of the sequence 〈aj〉 as

(8.7) ai = aj ⇐⇒ i ≡ j (mod ord(a)) ,

a useful observation in what follows. The next algebraic result is a com-
putational aid for computing ord(a). Its statement appeared in a letter
written by Pierre de Fermat to Frénicle de Bessy in 1640, and was later
proved by Gottfried Leibniz. It’s usually called Fermat’s Little Theorem, to
differentiate it from Fermat’s Last Theorem, which was proved in 1994 by
Andrew Wiles with the assistance of Richard Taylor [168, 158]. Alf van der
Poorten [162] has published a fairly accessible account of both the history
and the proof of Fermat’s Last Theorem, the culmination of the work of
many mathematicians.

Theorem 8.3.4 (Fermat’s Little Theorem). If F is a finite field with
q elements, then every non-zero a ∈ F satisfies aq−1 = 1, and so ord(a)
divides q − 1.

Proof. Let a be a fixed non-zero element of F, and let a1, . . . , aq−1 be any
listing of all non-zero elements in F. If a−1 is the multiplicative inverse of
a, then for any i, j,

aai = aaj ⇐⇒ a−1aai = a−1aaj ⇐⇒ ai = aj ,

which means that the sets {aa1, . . . , aaq−1} and {a1, . . . , aq−1} are equal.
Because multiplication is commutative, the product of the elements in the
second set equals the product of the elements in the first set,

a1 · · · aq−1 = (aa1) · · · (aaq−1) = aq−1(a1 · · ·aq−1).

230 8. Modular Recurrences

The product a1 · · · aq−1 is a non-zero element of the field F, and multiplying
the above equation by this element’s inverse yields aq−1 = 1.

Corollary 8.3.5. The period of any first–order linear recurrence with a =
1 in a finite field with q elements divides q − 1.

We now use this result to determine the periods of S(x) = 215x + 3 in
Zm for the prime m = 12323 without actually calculating any orbit. Since
m is a prime, F = Zm is a finite field, and all orbits are periodic. From
Exercise 8.3, 5816 is the multiplicative inverse of a − 1 = 214 in F and
s0 = −3 ∗ 5816 = 7198 is the only fixed point of S. The period of any
s0 = 7198 equals the order of 215 in F and it remains to find t = ord(215).
Using Fermat’s Little Theorem, t divides m−1 = 12322 = (2)(61)(101), and
there are eight possible values for t. (What are these eight values?) For each
divisor k of 12322, calculating ak can be done by fast exponentiation,
the same process that we have already used several times to find powers of
matrices. For instance, 101 = 26 + 25 + 22 + 1 gives

a101 = a26
a25

a22
a ≡ 4797 ∗ 1822 ∗ 3809 ∗ 215 ≡ 1 (mod m) .

Since 101 is prime, ord(215) = 101, and S has one fixed point and 122 orbits
whose period is 101.

We close this section with one more algebraic result. Every odd element
in Z8 (there are four of them) is a root of the quadratic equation x2−1 = 0.
This overabundance of roots (there are more than deg(x2−1) of them) can
never happen when the coefficient set is a field. (Refer to Exercise 8.23.)
This simple fact can have some surprising consequences. For instance, if F

is a field with q = pm elements, then the order of s ∈ F divides p− 1 iff s is
a root of xp−1 − 1 = 0; there are at most p − 1 elements of F whose order
divides p−1. Fermat’s Little Theorem gives the following result, which will
be useful later.

Theorem 8.3.6. Let F be a finite field with q = pm elements. If s is a
non-zero element of F, then ord(s) divides p − 1 iff s ∈ Zp.

8.3.1 First–order modular recurrences with maximal period

In this section we prove that any finite field with q elements has an element
whose order is q − 1, which we know is the largest possible order. These
elements are called primitive elements of F. The orbits of S(x) = ax+b are
easily described when a is a primitive element: there are only two orbits, the
fixed point and everything else! The reason for this is that Theorem 8.3.3
can be applied, since a cannot be either 0 or 1 and so both a and a − 1
are invertible elements of F. The next lemma is used in our proof of the
existence of primitive elements.

Lemma 8.3.7. Let a, b be non-zero elements of F with ord(a) = r and
ord(b) = s. If gcd(r, s) = 1, then ord(ab) = rs.

8.3 Periods of First–Order Modular Recurrences 231

Proof. Let n = ord(ab). Then (ab)n = 1. Also,

1 = ((ab)n)r = (ab)rn = (ar)nbrn = brn ,

and rn must be a multiple of ord(b) = s. Since gcd(r, s) = 1, this implies
that s divides n. Interchanging the roles of a and b we obtain that n is a
common multiple of r and s. Again using the fact that gcd(r, s) = 1, we
have lcm(r, s) = rs, and so rs divides n. We complete the proof by showing
that n divides rs. (Since rs and n are both positive, this gives n = rs.) For
this,

(ab)rs = (ar)s(bs)r = 1,

implying that rs is a multiple of ord(ab) = n.

Theorem 8.3.8 (Primitive Element Theorem). Every finite field with
q elements has at least one element whose order equals q − 1.

Proof. Let N be the maximum element in the finite set {ord(b) : b ∈ F},
and let d be some element of F with ord(d) = N . Fermat’s Little Theorem
implies that N ≤ q − 1. If we can prove that the order of every element
divides N , then each of the q − 1 non-zero elements of F would satisfy
xN − 1 = 0, and by Theorem 8.3.6, N ≥ q − 1 also would hold.

By way of contradiction, we assume that there exists an element c ∈ F
whose order does not divide N , from which it follows that there exists
a prime p such that pγ divides ord(c) and pγ does not divide N . Let
ord(c) = pγN1, where gcd(N1, p) = 1, and let β < γ such N = pβN2

with gcd(N2, p) = 1. For a = cN1 and b = d pβ

we have ord(a) = pγ and
ord(b) = N2. Since these orders are relatively prime, the last lemma implies
that ord(ab) = pγN2 > pβN2 = N, contrary to the maximality of N , and so
the order of every element of F does in fact divide N , giving N = q−1.

In Sections 69–75 of his famous Disquisitiones Arithmeticae [70], Carl
Friedrich Gauss considered the question of finding primitive elements for a
prime modulus. Gauss wrote (in Latin) “Euler admits that it is extremely
difficult to pick out these numbers (primitive elements) and that their na-
ture is one of the deepest mysteries of numbers.” Finding a primitive el-
ement is still considered a hard problem. It is related to the discrete log
problem, the basis for the (assumed) security of several cryptosystems.

In 1927 Emil Artin first conjectured that every nonsquare positive inte-
ger is a primitive element for infinitely many prime moduli. Some specific
examples of this conjecture had already been constructed in the years be-
tween Gauss’ work and 1927. For instance, 2 was already known to be a
primitive element for all primes p of the form p = 2q + 1, where q is prime
(these primes are now often called “safe primes”.) In [80] Christopher Hoo-
ley proved that Artin’s conjecture would follow from the Generalized Rie-
mann Hypothesis, a result that is thought to be true but is considered to
be very difficult to prove.

232 8. Modular Recurrences

Although it is hard to find primitive elements, our proof of the Primi-
tive Element Theorem can be combined with trial and error to construct
primitive elements. For example, to find a primitive element in the finite
field F = Z31, we could first try a = 2. Since the powers of 2 modulo 31
are 2, 4, 8, 16, 1, then ord(2) = 5 < 30, and 2 is not a primitive element.
We notice that 5 does not occur in this sequence and compute the pow-
ers of 5 mod 31. These are: 5, 25, 1, which gives ord(5) = 3 in F. Since
gcd(ord(2), ord(5)) = 1, from the lemma, ord(2∗5) = 15. Also, ord(−1) = 2
implies ord(21) = ord(−10) = 30, and 21 is a primitive element in F.

We can use the existence of primitive elements to derive the following
somewhat surprising result.

Corollary 8.3.9. If F is a finite field with q elements, then for any divisor
d of q − 1 there exists a first–order recurrence in F whose period is d.

Proof. Let a be any primitive element in F. For any divisor d of q−1, there
exists k such that kd = q−1. The period of the recurrence sn+1 = aksn + b
(for any b) is ord(ak) = d.

8.4 Periodic Second–Order Modular Recurrences

In the last section we proved that when the modulus is prime, the period of
all non-fixed points under a first–order modular recurrence sn+1 = asn + b
is the order of the coefficient a. For higher order sequences the situation is
less clear and seems to be more complicated.

Our analysis for second–order recurrences involves the matrix form of
the recurrence. Let R be either a finite field or Zm for some m ≥ 2 and let
〈sj〉 be a solution to a second–order homogeneous recurrence in R,

sn+2 = c1sn+1 + c2sn, c2 = 0 .

Although linear algebra cannot be used here unless R is a field, matrices
are still a convenient way to represent higher order recurrences. Recall that
the companion matrix of the recurrence is

(8.8) A =
[
c1 c2

1 0

]
,

and consecutive pairs Si = (si+1, si)T are connected by the matrix equation
Sn = ASn−1, implying

Sn = AnS0 .

When c2 is invertible in R, it can be checked that

A−1 =
[

0 1
c−1
2 −c1c

−1
2

]
,

8.4 Periodic Second–Order Modular Recurrences 233

and A is an element of the finite set S of invertible 2 × 2 matrices with
entries in R. In Exercise 8.14 you prove that this implies there exists a
minimal positive integer k (called the order of the matrix) such that
Ak = I, from which we get S0 = Sk = AkS0, proving that k is a multiple of
the period of the sequence. Although the order of the matrix can be larger
than the period (see Exercise 8.25), we will next obtain conditions on the
initial values that ensure that the period equals the order of the matrix.

Let T be the map T (S) = AS defined on R2. Then T is a linear map since
it satisfies T (cS + X) = cT (S) + T (X) even when R is not a field. If the
first two state vectors, S0 = (s1, s0)T and S1 = (s2, s1)T , form a spanning
set for R2, then each (linear map) T n is determined by its effect on the
set {S0, S1}. In particular, An = I iff both T n(S0) = S0 and T n(S1) = S1,
which implies that the order of the matrix equals the period of the solution.
We’ve proved the following theorem.

Theorem 8.4.1. Let R be either a finite field or Zm for some m ≥ 2. If
sn+2 = c1sn+1+c2sn is a second–order recurrence in R and c2 is invertible,
then every solution is periodic and the period always divides the order of
the companion matrix of the recurrence. Moreover, if {S0, S1} is a spanning
set for R2, then the period equals the order of the companion matrix.

Since our proof relied only on the invertibility of the companion matrix,
an analogue of this result holds for kth order recurrences. (Refer to Exer-
cise 8.27.)

When R is a field and the eigenvalues of A are distinct, it can be checked
that any non-trivial S0, S1 are linearly independent, and we have the fol-
lowing theorem.

Theorem 8.4.2. Let F be a finite field and let sn+2 = c1sn+1 + c2sn be a
second–order recurrence in F with two distinct eigenvalues λ1 = λ2 in F.
Then every non-zero solution is periodic and its period equals the order of
the companion matrix unless it has the form sn = γλn

i , in which case the
period is ord(λi).

8.4.1 Periods of modular Fibonacci sequences

We now specialize to the Fibonacci recurrence, and first answer the ques-
tions posed at the beginning of this chapter. As already noted, every Fi-
bonacci orbit is periodic, and the period mod 6 is lcm(3, 8) = 24. If 〈fj〉
is the Fibonacci sequence, we noted in Chapter 2 that the orbit of any
(a, b) ∈ Z2 under F (x, y) = (y, x + y) is the sequence 〈bfj+1 + afj〉 (where
f−1 = 1). Therefore, the period of any orbit under F modulo 6 must divide
the period of the orbit of (0, 1), and so 24 is the largest period obtained
from the Fibonacci recurrence mod 6.

Our final question was how many different orbits are generated by the
Fibonacci recurrence mod 6, where two orbits are considered the same

234 8. Modular Recurrences

when they’re translates of each other. First note that (0, 0) is the only
fixed point. Among the 62 − 1 = 35 non-zero elements of Z2

6, the usual
Fibonacci sequence (which is the orbit of (0, 1)) generates 24 different pairs
of consecutive elements, and this leaves 35 − 24 = 11 non-zero pairs to be
accounted for. In the orbit of (2, 2), every element of the orbit is even,
and so its period equals the period of (1, 1) mod 3, which we’ve already
calculated to be 8. (Because its period is not 24, this orbit is completely
disjoint from the orbit of (0, 1).) Similarly, since the period of (1, 1) mod 2
is 3, the orbit of (3, 3) mod 6 is 3. These two periods account for the other
11 elements and give a total of three different non-zero orbits under the
Fibonacci recurrence. (Also refer to [163].)

What about the period of the Fibonacci sequence for other moduli? A
paper by D.D. Wall [165] was the first systematic approach to this problem,
and although many of his results have been generalized, his 1960 paper
contains most of what is currently known about modular Fibonacci periods.

Recalling that the period mod m = pa1
1 · · · par

r is the least common multi-
ple of the periods mod pai

i , it is enough to consider moduli that are powers
of a prime number. Also, if t = t(pj+1) is the period of the Fibonacci
sequence mod pj+1 for any j ≥ 1, then

ft ≡ 0 (mod pj+1) and ft+1 ≡ 1 (mod pj+1)

are congruences that also hold modulo all divisors of pj+1. Therefore, for
all i ≤ j it is also true that (ft, ft+1) ≡ (0, 1) (mod pi), and we have

t(pj+1) is divisible by t(pj) .

Since the first two state vectors, S0 = (1, 0)T , S1 = (1, 1)T , form a span-
ning set for every Z2

m, the period is always the order of the companion

matrix, F =
[
1 1
1 0

]
. Using the fact that F 3 = I + 2F , it can be shown

(refer to Exercise 8.26) that for all n > 0, t(2n) = 3 · 2n−1. The periods
t(5n) = 4 · 5n can be found in a similar manner.

What about powers of other primes p = 2, 5? It has been conjectured
that t(pj) = pj−1t(p) holds for all prime powers, and this was verified by
Wall for all p ≤ 10, 000. His paper would be very long indeed if for each
prime less than 10, 000 he performed an induction similar to what we have
just outlined for p = 2. Rather, he proved the surprising fact that if p
is a prime for which t(p2) = t(p), then it is true that t(pj+1) = pjt(p)
for all j ≥ 1. We don’t give his argument here but simply comment that
he used several combinatorial identities to derive the result. In January
2003 Jonathan Goff, a graduate student in mathematics at Oregon State
University, extended Wall’s calculations by verifying that t(p2) = t(p) for
all primes less than one million and for all primes p ≡ ±1 (mod 10) that
are less than twenty million.

Let’s look again at the Fibonacci sequence mod 5. Rather than computing
all terms until the second occurrence of 0, 1, we’ll consider what happens

8.4 Periodic Second–Order Modular Recurrences 235

algebraically. In Z5[x] the characteristic polynomial ch(x) = x2 − x − 1
factors as ch(x) = (x − 3)2. Since λ = 3 is a repeated eigenvalue and Z5 is
a field, 3 there exists a polynomial p with deg(p) ≤ 1 such that

fn = p(n)3n .

(Note that this is written as an equation in Z5, and is actually the same
as saying that fn ≡ p(n)3n (mod 5).) From f0 = 0 and f1 = 1 we obtain
p(n) = 3−1n, which gives

fn = n3n−1 for all n ≥ 0 .

If t = t(5) is the period, in Z5 we have

t3t−1 = ft = f0 = 0 and (t + 1) · 3t = ft+1 = f1 = 1 ,

which can be solved to find that t is the least positive integer that simulta-
neously satisfies t ≡ 0 (mod 5) and 3t ≡ 1 (mod 5). Since ord(3) = 4 in Z5,
the period is t = lcm(4, 5) = 20.

For this argument to work for other primes p = 2, 5, we’d like to find
the eigenvalues of the recurrence modulo p, and in order to do so, we must
factor the characteristic polynomial. But ch(x) might be an irreducible
quadratic in Zp[x]. When is ch(x) irreducible? Since a quadratic polynomial
is irreducible in Zp[x] iff it has no roots in Zp, we’ll use the technique of
completing the square to determine whether ch(x) has roots. The oddness
of p means that 2 is invertible, say 2c = 1 in Zp, and

ch(x) = x2 − x − 1 = x2 − 2cx − 4c2 = (x − c)2 − 5c2,

giving ch(x+c) = x2−5c2. Since ch(x) is irreducible exactly when ch(x+c)
is irreducible, we obtain

ch(x) is reducible in Zp[x] ⇐⇒ p = 2 and x2 − 5c2 has roots in Zp.

The last restriction is the same as requiring that 5c2, and so 5, is a square
in Zp (which is often called a quadratic residue.) For what odd primes
does this happen? For this type of question, number theorists invoke the
famous Law of Quadratic Reciprocity, which was first stated by Leg-
endre and proved by Gauss [70, Section 123] 4. Using quadratic reciprocity,
it’s possible to prove that p ≡ ±1 (mod 10) are exactly the odd primes for
which 5 is a non-zero square in Zp[x]. These are therefore the primes p
for which the Fibonacci recurrence mod p has eigenvalues in Zp[x]. What
about the other odd primes, p ≡ ±3 (mod 10)? For those primes ch(x) is

3Note that this argument cannot be used for m = 25, since Z25 is not a field.
4Consult the website http://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html

for a chronology of the many proofs of the Law of Quadratic Reciprocity.

236 8. Modular Recurrences

irreducible in Zp[x]. But (refer to Exercise 8.12) K = Zp[x]/(ch(x)) is a
field with p2 elements, and ch(x) has a root in K.

Setting K = Zp[x]/(ch(x)) for primes p ≡ ±3 (mod 10), and setting K =
Zp for primes p ≡ ±1 (mod10), then for each prime p = 2, 5 we have
defined a field K in which ch(x) has roots in K. We next show that these
eigenvalues are different. If λ1 = λ2 were to hold, then (x−λ1)2 = x2−x−1,
and λ2

1 = −1. Since ch(λ1) = 0, then λ2
1 = λ1 + 1, from which we get

λ1 = −2. Therefore, 5 = ch(−2) = 0 in K, contradicting p = 5. So, for
p = 2, 5, the modular Fibonacci matrix F has distinct eigenvalues and
so is diagonalizable. The change of basis matrix is the invertible matrix

B =
[
λ1 λ2

1 1

]
with

BFB−1 =
[
λ1 0
0 λ2

]
and BF jB−1 =

[
λj

1 0
0 λj

2

]
.

This means that lcm(ord(λ1), ord(λ2)) is the order of F , which equals t(p)
(recall Theorem 8.4.2).

You might rightfully question the helpfulness of relating the period to the
order of certain elements because we have already said that calculating the
order of an element is a hard problem. (In particular, refer to our discussion
of Artin’s conjecture on primitive elements.) The answer to this objection
is that this connection allows us to prove other results about the period,
and the next theorem is an example of this. (A different proof of this result
can be found in [165, Theorems 6, 7].)

Theorem 8.4.3. For prime p = 2, 5, let t be the period of the Fibonacci
sequence modulo p.
(a) If p ≡ ±1 (mod 10), then t divides p − 1.
(b) If p ≡ ±3 (mod10), then t divides 2(p + 1), and also (2p + 2)/t is

odd.

Proof. From ch(x) = x2 − x − 1 = (x − λ1)(x − λ2) we have λ1 = −λ−1
2 .

Since ord(λ) = ord(λ−1) and ord(−1) = 2, then

lcm(ord(λ1), ord(λ2)) = lcm(ord(λ1), 2) ,

and the above discussion gives t = lcm(ord(λ1), 2).
First considering the case in which p ≡ ±1 (mod 10), recall that K = Zp,

and by Fermat’s Little Theorem we know that the order of the non-zero
element λ1 ∈ K divides p− 1, an even number, and so lcm(ord(λ1), 2) does
divide p − 1.

In the other casein which p ≡ ±3 (mod 10), the field K contains an el-
ement α such that α2 = 5. Since 5 is an element of Zp, then α2(p−1) =
5p−1 = 1. This means that x = αp−1 is a root of the polynomial x2−1 = 0,
which has only the two roots x = ±1 in any field. Since α /∈ Zp, we

8.4 Periodic Second–Order Modular Recurrences 237

know that αp−1 = 1 (refer to Theorem 8.3.6), and so αp−1 = −1 follows.
What does this have to do with ord(λ1)? In the “completing the square”
argument above we had ch(x) = (x − c)2 − 5c2, where 2c = 1 . Because
ch(λ1) = 0, (λ1 − c)2 = 5c2 = α2c2, implying λ1 = c(1 ± α), and we can
assume the positive sign occurs. Since K has p2 elements, then (refer again
to Exercise 8.7)

(1 + α)p = 1 + αp = 1 + ααp−1 = 1 − α ,

which when combined with c p−1 = 1 gives

λ p+1
1 = cp+1(1 − α)(1 + α) = c2(1 − α2) = c2(1 − 5) = −(2c)2 = −1 .

Then λ
2(p+1)
1 = 1, and so ord(λ1) divides 2(p + 1). Further, writing 2(p +

1) = 2kn where n is odd, we know that ord(λ1) divides 2kn and doesn’t
divide 2k−1n (since λ p+1

1 = 1). This means that ord(λ1) is even, and
t = lcm(ord(λ1), 2) = ord(λ1) with (2p + 2)/t odd.

We calculated t(p) for all primes p ≤ 1000 and found that the upper
bound in the theorem is attained quite often for these primes. Of the
seventy-eight primes that are congruent to ±1 (mod 10), the period equals
the upper bound for forty of them. The situation for the “irreducible”
primes is even stronger. Among all primes less than 1000 there are eighty-
eight primes congruent to ±3 (mod 10) and for all but fifteen of these the
period equals the upper bound. Table 8.2 lists the irreducible primes with
smaller periods, and the second column gives the quotient (2p + 2)/t.

TABLE 8.2. The exceptional primes congruent to ±3 (mod 10)

p (2p + 2)/t

47, 107, 113, 233, 353, 563, 677, 743, 977 3
307, 797 7
263, 557, 953 9
967 11

We close this discussion by computing the Fibonacci period t(23 32 17 472).
Corollary 8.1.4 implies that the period is lcm(t(8), t(9), t(17), t(472)), where
by Wall’s calculations we know that

t(8) = 22 t(2), t(9) = 3 t(3), and t(472) = 47 t(47) .

From the earlier calculations given in Section 8.1, we have t(2) = 3 and
t(3) = 8. The remaining two primes p = 17, 47 are congruent to −3 (mod
10), and from Table 8.2 we see that 17 is not exceptional, which means
that t(17) = 2(18) = 36 and that t(47) = 2(48)/3 = 32. Combining these
facts gives the period

lcm(12, 24, 36, (32)(47)) = (32)(9)(47) = 13536 .

238 8. Modular Recurrences

8.5 Applications

8.5.1 Application 1: Pseudorandom number generation

Random numbers are often needed in scientific computation, especially
simulations and probabilistic algorithms that have some stochastic com-
ponents. They are also used in cryptology and even computer games. The
term “random sequence” means a sequence that passes certain statisti-
cal tests. For instance, one simple randomness requirement for sequences
from Z10 might be the property that each digit should occur about the
same number of times, so that in suitably long subsequences each decimal
digit occurs close to one-tenth of the time. In contrast to sequences gen-
erated mechanically or by a physical phenomenon, sequences generated by
a mathematical iterative process (such as a recurrence) can be proved to
have good statistical properties. Another advantage of such deterministic
procedures is that they will dependably generate the same sequence when
the initial conditions are unchanged. This allows for the exact reproduction
of data for numerical experiments. Sequences that are generated determin-
istically and have good statistical properties are called sequences of pseu-
dorandom numbers (PRNs). Because a PRN generator cannot satisfy
all possible statistical properties (which is another reason for calling them
pseudorandom), the practitioner should know which statistical properties
are required for the application before choosing the generator. Chapter 3
of Knuth [88] and Chapter 7 in Niederreiter [119] can be consulted for
information on the common statistical tests used to test for pseudoran-
domness. In this section we concentrate on two structural properties, the
period length and the lattice structure.

A linear modular recurrence is the simplest example of a determinis-
tic process that can be used for generating PRNs. These are frequently
called linear congruential generators. From the perspective of PRN
generation, the Primitive Element Theorem guarantees that every prime p
has at least one linear PRN generator mod p whose period is p − 1, the
longest possible period. Knuth [88, Chapter 3] has an extensive discussion
of the periods for general moduli. For many years after their introduction
by D.H. Lehmer [94] in 1949, the linear congruential generator was the pre-
ferred method of PRN generation. However, an article by G. Marsaglia [106]
raised some serious questions about their use by proving that every linear
PRN generator has an inherent lattice structure. As he said in the paper,
“for the past 20 years such regularity might have produced bad, but un-
recognized, results in Monte Carlo studies” In a later article [107] he
developed the Lattice Test for PRNs, which can be stated as follows.
For any deterministic sequence 〈sn〉 (with period N ≥ 2) generated in a
finite field F and each d ≥ 1, define the d-dimensional points U1, . . . , UN−1

by

Ui = (si − s0, si+1 − s1, . . . , si−1+d − sd−1) ∈ Fd ,

8.5 Applications 239

and let Ld be the subspace of Fd spanned by these points. For instance,

L1 = Span{U1} = Span{s1 − s0} = F

(since s1 = s0) and

L2 = Span{U1, U2} = Span{(s1 − s0, s2 − s1), (s2 − s0, s3 − s1)} ,

which may have dimension one or two over F. The lattice dimension
for the sequence 〈sn〉 is defined to be the largest integer D ≥ 1 for which
LD = FD. When the lattice dimension is small, the points display a high
degree of regularity, and so the generation is predictable and not random.
A linear generator fares poorly under this test, since an inductive argument
shows that sn = asn−1 + b satisfies

sn+i − si = ai(sn − s0) for all i ,

and the points Ui therefore have the form Ui = (si − s0)(1, a, a2, . . . , ad−1).
This means that its lattice dimension is always 1.

The remainder of this discussion on PRNs is devoted to an analysis of
a commonly used nonlinear generator whose lattice dimension mod p has
been proved to be at least (p + 1)/2, much better than linear generators.
The generator is called an inversive generator on the finite field F and
has the form f(x) = ax−1 + b (where we set 0−1 = 0, but otherwise the
arithmetic is performed in F.) Because f is a one-to-one function on F, any
sequence generated by the first–order recurrence xn+1 = f(xn) is periodic,
and the number of elements in F is an upper bound on the period. Below
we show that any finite field has inversive generators with this maximal
period.

Although the Euclidean Algorithm can be used to compute inverses
quickly, finding inverses does take longer than performing “polynomial”
operations, and so in this respect inversive generators are slower. On the
other hand, research has shown that inversive generators do usually have
better statistical properties than polynomial generators. (Refer to [119,
Chapter 8].) For instance, extensive computations by Poul Petersen [127]
show that for all primes p ≤ 105 the lattice dimension of inversive genera-
tors mod p with maximal period is either p− 6, p− 4, or p− 2. (Table 8.3
gives more details. Also, in [64] it’s shown that the lattice dimension of a
maximal period inversive generator is always odd.)

As said above, we will show that every finite field has inversive generators
of maximal period. The polynomial chI(x) = x2 − bx − a associated with
the generator f(x) = ax−1 + b is useful in this analysis. For example, the
generator f(x) = 3x−1 + 2 in F = Z11 has chI(x) = x2 − 2x − 3, which
factors as chI(x) = (x − 3)(x− 10) in F[x]. Its roots x = 3, 10 are the only
fixed points of f , and every other element of F is in the orbit of x = 2,
which is 2, 9, 6, 8, 1, 5, 7, 4, 0. This example illustrates a general property of

240 8. Modular Recurrences

TABLE 8.3. Lattice dimensions for maximal period inversive generators mod p
for 5 ≤ p < 105

Number of primes less than 105 9590
Number of maximal period inversive generators 5, 579, 945, 320, 208
Number whose dimension is p − 6 1
Number whose dimension is p − 4 1829
Number whose dimension is p − 2 5, 579, 945, 318, 378

an inversive generator: its fixed points are precisely the roots of chI(x) in
the field F. To see this, we first note the fact that a is non-zero implies that
0 is not a fixed point of f and is not a root of chI(x). Therefore, any root
c of chI(x) is invertible, and multiplying by c−1 yields

chI(c) = c2−bc−a = 0 ⇐⇒ c2 = bc+a ⇐⇒ c = b+ac−1 = f(c).

Because our goal is to find inversive generators with maximal period, we
will consider generators that have no fixed points, which is equivalent to
requiring that chI(x) be irreducible in F[x]. As we used earlier with the
Fibonacci recurrence, K = F[x]/(chI(x)) is then a field in which chI(x)
factors into linear factors, chI(x) = (x−α)(x−β) in K[x]. We ensure that
the roots are distinct by requiring that the discriminant b2 + 4a be non-
zero. Although the recurrence is not linear, there is a relationship between
the orbit of 0 and the roots of chI(x); namely, we will show that for every
j ≥ 0 with f (j−1)(0) = 0,

(8.9) f (j)(0) =
αj+1 − βj+1

αj − βj
.

From chI(x) = (x−α)(x−β) = x2−bx−a, we have a = −αβ and b = α+β,
and this gives

f(0) = b = α + β =
α2 − β2

α − β
,

which is (8.9) for j = 1. Further, if for j ≥ 1 we have

f (j)(0) =
αj+1 − βj+1

αj − βj
= 0 ,

then

f (j+1)(0) = −αβ
αj − βj

αj+1 − βj+1
+ α + β =

αj+2 − βj+2

αj+1 − βj+1
,

and the (j + 1)st element of the orbit of 0 is as given by (8.9).

Theorem 8.5.1. Let F be a finite field with q elements and let f be an
inversive generator on F such that chI(x) is irreducible in F[x] and has
non-zero discriminant. If t is the period of x = 0 under f , then the order
of βq−1 in K = F[x]/(chI(x)) is t + 1.

8.5 Applications 241

Proof. Since f is a one-to-one function, every orbit of f is periodic, and
the period t is the least positive integer such that f (t)(0) = 0. As above,
the irreducibility of chI(x) implies that K = F[x]/(chI(x)) is a field that
contains elements α, β such that (8.9) holds. Therefore,

f (t)(0) = 0 ⇐⇒ αt+1 − βt+1 = 0 ⇐⇒ (αβ−1)t+1 = 1 .

Since t is the minimal positive integer with this property, t + 1 must be
the order of αβ−1 in K. We complete the proof by showing that α = βq.
From Exercise 8.7 we know that chI(βq) = (chI(β))q , which means that
βq is also a root of chI(x). The fact that β /∈ F implies βq = β (refer to
Exercise 8.16), and βq is forced to equal α, the other root of chI(x).

There is a similarity between this last result and what happens with first–
order linear recurrences, since the period of 0 is related to the order of an
element in an associated algebraic structure. Because calculating the order
of an element can be quite lengthy, this result is more useful for theoretical
rather than computational purposes. For instance, it’s used in [64] to show
that the lattice dimension of an inversive generator is always odd.

For the sake of concreteness, let us consider the orbit of 0 in F = Z11

under f(x) = 7x−1 + 10. Then chI(x) = x2 + x + 4, which can be checked
to be irreducible in F[x] with non-zero discriminant. We won’t explicitly
determine the field K = F[x]/(chI(x)), but rather recall that it’s a finite
field with (11)2 = 121 elements in which chI(x) factors into two linear
factors. We want to calculate or otherwise determine the order of γ =
βq−1 = β10, where β ∈ K is a root of x2 + x + 4 and its order divides
q2 − 1 = 120. This means that the order of γ = β10 divides 12. Calculating
γ = β10 using fast exponentiation, from β2 = −β − 4 we have

β4 = (β + 4)2 = 7β + 1 ; β8 = (7β + 1)2 = −2β + 3 ,

and
γ = β8 · β2 = (−2β + 3)(−β − 4) = 3β + 2 .

Since

γ2 = (3β + 2)2 = 3β + 1 and γ3 = (3β + 1)(3β + 2) = −1 ,

the order of γ = βq−1 is 6, which means that the period of 0 is five. This can
also be verified by direct calculation, tracing the orbit of 0 as 0, 10, 3, 5, 7.

Theorem 8.5.2. Every finite field has inversive generators with one orbit.
This orbit contains every element of the field and so has the maximal period
among all sequences generated by an inversive generator.

Proof. Let F be a finite field with q elements, and let g be any irreducible
quadratic polynomial in F[x]. (In Exercise 8.34 you show that such poly-
nomials exist for all q.) From the Primitive Element Theorem, there exists

242 8. Modular Recurrences

γ ∈ F[x]/(g) whose order is q2−1. Therefore, γ /∈ F, and the quadratic poly-
nomial G(x) = (x−γ)(x−γq) is irreducible in F[x]. For G(x) = x2−Bx−A,
we consider the associated inversive generator f(x) = Ax−1 +B, which has
chI(x) = G(x). Since ord(γ) = q2 − 1, then ord(γq−1) = q + 1, and the
period of x = 0 under f does equal q.

8.5.2 Application 2: Integer factorization

The security of the RSA cryptosystem [137] relies on the difficulty of fac-
toring integers that are a product of two large primes. Because of this,
there was an increase of interest in factorization algorithms after the RSA
cryptosystem was introduced in the late 1970s.

Factoring a natural number m can be viewed as a search problem, search-
ing the set S = {2, . . . ,

√
m} for divisors of m, but for large m searching

by trial division is not practical.5 Instead of searching all of S, most mod-
ern factoring techniques generate a subset T whose elements are likely
to have a factor in common with m, and search for t ∈ T such that
d = gcd(t, m) = 1, m. Once such t ∈ T has been found, the factoriza-
tion m = d · m

d is obtained. (A complete factorization of m is then found
by continuing to factor each of d, m

d .) The key insight was that searching
for elements that have a factor in common with m can be used to get a
divisor of m, and such a search is more reasonable than searching for exact
divisors. For instance, in the extreme (RSA) case in which m is a product
of two primes p, q, each of size O(

√
m), the integers

p, 2p, . . . , (q − 1)p and q, 2q, . . . , (p − 1)q

are all divisible by p or q, and we are more likely to locate one of these
p + q − 2 = O(

√
m) integers than one of the two integers p, q.

A Certificate of Compositeness. Most modern factorization methods
are probabilistic, in the sense that the method is likely to return a factor-
ization for composite m, but no specific run is guaranteed to produce a
factorization of m. Because of this, these probabilistic methods are incon-
clusive when applied to a prime, and the methods are used only after m
has obtained a “certificate of compositeness.” Since the most obvious way
of showing that a number is composite is to demonstrate a factorization,
at first this may seem like a strong requirement. But there are some rela-
tively quick tests for compositeness. We mention a few that are based on
material already developed in this chapter, and refer the interested reader
to [30, Chapter 3] and cr.yp.to/primetests.html for more information.

5The authors of a recent text [30, p. 111] have calculated that “in one day of cur-
rent workstation time, perhaps (the primality of) a 19-digit number could be resolved”
using trial division. This translates to the factorization of a (very small) 38-digit RSA-
composite requiring a full day of computation by trial division.

8.5 Applications 243

In the summer of 2002, Agrawal, Kayal, and Saxena found a determinis-
tic primality test that has polynomial time, specifically O(log12+ε(m)). 6

The number theory community was amazed and delighted by the simple
elegance of the test and its proof. As of this writing, the test is not yet of
practical use.

Let m be the number to be tested for compositeness. For a fixed natural
number a, 1 < a < m, we use the Euclidean Algorithm to calculate d =
gcd(a, m). If d = 1, we know for certain that m is composite, and have
obtained its certificate of compositeness as well as the divisor d. We may
therefore assume that gcd(a, m) = 1. The contrapositive of Fermat’s Little
Theorem yields a Fermat Test for compositeness; namely, if there exists
a, 1 < a < m, such that am−1 ≡ 1 (mod m), then m is not prime. Notice
that since, for example, the composite number m = 21 satisfies am−1 ≡
1 (mod m) for a = 8, the condition is only sufficient and not necessary for
compositeness.

A composite integer m that satisfies am−1 ≡ 1 (mod m) for 1 < a < m
is called a pseudoprime to the base a, where the term “pseudoprime” is
used because for the base a the composite number m behaves as if it were
prime. In 1950 Paul Erdős [59] proved that pseudoprimes are relatively rare
when compared to primes, which means that performing a battery of Fer-
mat Tests might be a useful strategy for verifying compositeness. However,
in 1994 W.R. Alford, Andrew Granville, and Carl Pomerance [3] proved the
existence of infinitely many composite m, that are pseudoprimes to every
base which is relatively prime to m. These numbers are called Carmichael
numbers, named in honor of R.D. Carmichael’s 1912 work [24].

All is not lost, because we can invoke our theory and obtain a variant,
called the Strong Fermat Test, that doesn’t have this problem. The
idea behind this is the following. If m were prime, then by Fermat’s Little
Theorem, b = a

m−1
2 would be a solution to x2−1 = 0, a quadratic equation

that can have only the two solutions x = ±1 in the field Zm. Therefore,
if we can find a non-zero base a such that a

m−1
2 is something other than

±1 (mod m), we are assured that m is not prime. Because the exponent is
slightly smaller, this test is a bit easier to perform than a Fermat Test, but a
more important property is that there are no “strong Carmichael” numbers.
In fact, in 1980 Monier [114] and Rabin [132] independently proved that
every odd composite m > 9 is a strong pseudoprime for at most one-
quarter of the bases mod m. (If the widely believed but still-unproved
Generalized Riemann Hypothesis is true, we’d actually be guaranteed that
every odd composite m passes a Strong Fermat Test for at least one positive
base a < 2 log2(m).) Therefore, m must be composite if there is a non-zero
base a for which a

m−1
2 ≡ ±1 (modm). For example, the Strong Fermat

6www.cse.ittk.ac.in/primality.pdf

244 8. Modular Recurrences

Test with a = 2 proves that m = 18923 is composite, since m−1
2 = 9461

and 29461 = 8144 in Zm.

The Pollard Rho Method. We will now discuss one of the earliest mod-
ern methods for factoring an integer m. The method involves a clever use
of orbits of a polynomial modulo m, which we know must be eventually
periodic and so can be drawn in the shape of the Greek letter ρ, where the
tail indicates the pre-period of the orbit. (Refer to Figure 8.1.). The method
is now usually called the Pollard Rho Method although in his original
article [128] Pollard referred to the algorithm as the Monte Carlo Method
because it is probabilistic and relies on a polynomial that has “sufficiently
random” orbits. In practice, a quadratic polynomial is usually used unless
some special knowledge of the divisors of m indicates that a polynomial of
higher degree would work better.

The method relies on the iterates of f(x) being sufficiently random that
a generic orbit of f(x) modulo m has the property that there is a proper
divisor d of m such that the orbit gets into a cycle modulo d well before it
begins to repeat modulo m. Such an orbit yields a nontrivial divisor of m,
since a ≡ b (mod d) implies g = gcd(a−b, m) is a multiple of d, while a ≡ b
(mod d) ensures that g is a proper divisor of m. So, a successful orbit is
sufficiently random that it becomes periodic modulo some divisor d before
it becomes periodic modulo m. In [74] Richard Guy stated that for prime
p the orbits of f(x) = x2 + 1 modulo p seem to cycle quite quickly, and he
conjectured that the number of iterates needed to cycle is O(

√
p ln(p)).

Writing the conditions for successful orbits in terms of iteration of the
function f(x), we want the sequence of iterates to contain some s ∈ Zm

such that there are integers n, k (say n < k) for which

f (n)(s) ≡ f (k)(s) (mod d)

but

f (i)(s) ≡ f (j)(s) (mod m) for all 0 ≤ i, j ≤ k .

Then for A = f (n)(s) − f (k)(s) (mod m), g = gcd(A, m) is a proper di-
visor of m. Popular implementations of the method recognize that it’s
not necessary to find the smallest values of n and k for which f (n)(s) ≡
f (k)(s) (mod d). For example, Floyd’s cycle-detecting method uses the idea
of subtracting the “fast” sequence 〈f (2n)(s)〉 from the “slow” sequence
〈f (n)(s)〉 and then using the sequence

gcd(f (n)(s) − f (2n)(s) , m) .

(Refer to the work of R. Brent and J. Pollard [13] for other refinements.)
Here’s an algorithm:

8.5 Applications 245

PROCEDURE POLLARD(m,f(x))
Randomly generate s.
t := f(f(s)); d := gcd(s − t, m)
WHILE d = 1 DO

s := f(s)
t := f(f(t))
d := gcd(s − t, m)

ENDWHILE
RETURN(d)

If POLLARD(m, f(x)) = m is returned, the procedure can be repeated
using another choice of either the polynomial f or the seed s.

We have already commented that m = 18923 can be shown to be com-
posite by the Strong Fermat Test with a = 2. Let’s now use the Pollard
Rho Method with f(x) = x2 + 1 to factor m. For instance, the first few
elements of the orbit of 2 under f(x) mod m are

2, 5, 26, 677, 4178, 8679, 11502, 5312, 3152, 530, 15979, 403, 11026, 11325 .

Applying the Pollard Rho Method gives dn = 1 for all n ≤ 8 and then the
divisor d9 = 127. From this example you see that the gcd sequence can
begin with a rather long string of ones. Because of this, implementations of
the method often take giant steps through the gcd sequence: Calculating
several Ai = f (ni)(s)− f (2ni)(s), finding their product A mod m, and then
computing g = gcd(A, m). Since A < m, g is a proper divisor provided at
least one Ai has a nontrivial common divisor with m.

It is useful to modify the condition in the WHILE statement so that the
do-loop ends when it seems likely that the run will not be successful. This
translates to having a good estimate of when the first duplication is likely
to occur for a given modulus; that is, we want an estimate for the length
of the letter ρ in Figure 8.1. In mathematical terms, the probability that
there is a repeated element among k elements chosen from a set with n
elements is 1 − P (k, n), where

P (k, n) =
n(n − 1) · · · (n − (k − 1))

nk
=

(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)
is the probability that the k choices are distinct. Estimating this probability
is often referred to as The Birthday Problem, because it can be used to
guess the likelihood that at least two people in a crowd of M people have
the same birthday. (Refer to Exercise 8.38.) In Exercise 8.37 you find fairly
tight bounds on this probability, which yields the following heuristic for
terminating the loop. Remember that we don’t want a duplication mod

246 8. Modular Recurrences

m, and from Exercise 8.37(c) we see that a duplication mod m is unlikely
before 0.8

√
m iterations. On the other hand, since m is composite, it has

a divisor d within the interval (1,
√

m), and so from Exercise 8.37(b) we
expect a duplication mod d within 1.39

√
d steps, that is, within 1.39 4

√
m

steps, which for large m is quicker than 0.8
√

m steps. Because of this, it
is reasonable to stop the run if it doesn’t yield a divisor within 1.39 4

√
m

iterations.

8.6 Exercises

Ex 8.1. For any positive integer m, show that there are infinitely many
Fibonacci numbers that are divisible by m.
Hint: Consider the Fibonacci sequence mod m.

Ex 8.2. Find all periodic and eventually periodic orbits of f(x) = −x2 +
2x + 1.

Ex 8.3. (a) Show that gcd(19, 157) = 1. Find an integer solution to
19x+157y = 1 and show that there exist no positive integer solutions
to 19x + 157y = 1.

(b) Find the multiplicative inverse of 214 (mod 12323).
(c) Show that there are integer points (x, y) on the line 179x+2351y = 1.

Find the integer point on the line that is closest to the origin.

Ex 8.4. For the finite field F, define n · 1 to be the sum of n copies of the
multiplicative identity 1 in F.

(a) Show that there exists a least positive integer n0 such that n0 ·1 = 0,
the additive identity in F.

(b) Show that n0 must be prime. This is called the field characteristic
of F.

Ex 8.5. This problem contains a justification of Montgomery multiplica-
tion. (Refer to the procedure in Section 8.1.2.)

(a) Write the recursions for the sequences 〈Qi〉 and 〈Ri〉 .
(b) Use congruence modulo r to show that each Ri is an integer.
(c) Use induction to show that for each 0 ≤ i ≤ k,

ri+1Ri ≡ a0 + a1r + · · · + air
i (mod m) .

(d) Complete the justification by proving that rk+1Rk < 2m.
(e) What is the output from MULT(rk+1a, rk+1b)?

Ex 8.6. Let F be a finite field of characteristic p. Show that F can be
regarded as a finite-dimensional vector space over Zp, and therefore F has
pn elements for some n ≥ 1.

8.6 Exercises 247

Ex 8.7. Let F be a finite field with q = pn elements. Show that for any
f ∈ F[x], (f(x))p = f(xp) and that (f(x))q = f(xq) follows by induction.
Hint: Use the Binomial Theorem.

Ex 8.8. Let F be any finite field and n be a positive integer. Let V be the
set of all polynomials in F[x] of degree less than n.

(a) Show that V is an abelian group under the operation of polynomial
addition in F[x].

(b) Show that V is a vector space of dimension n over F. Therefore, the
number of elements in V equals qn, where q is the number of elements
in F.

Ex 8.9. Let g(x) ∈ F[x] be a fixed polynomial, with n = deg(g). Let V
be the set of all polynomials in F[x] whose degree is less than n, which
was shown to be a vector space in the last exercise. Impose still more
structure on V by defining an additional operation � as follows. For any
a(x), b(x) ∈ V we use the Division Algorithm for polynomials to obtain
q(x), r(x) ∈ F[x] such that

a(x)b(x) = q(x)g(x) + r(x) where deg(r) < n ,

and define the operation � on V by a(x) � b(x) = r(x) ∈ V . Show that
� is an associative commutative operation on V that is distributive over
the usual addition defined as in Exercise 8.8. Is V always a field under the
operations of + and �? In what follows we use the notation F[x]/(g(x)) for
V .

Ex 8.10. Let F = Z7 and g(x) = (x2 + 1)(x3 + x + 1). Show that neither
x2 + 1 nor x3 + x + 1 has a multiplicative inverse in F [x]/(g(x)).

Ex 8.11. Let F be any finite field and let g(x) be a reducible polynomial
in F[x]; that is, there exist polynomials a(x), b(x) ∈ F[x] such that g(x) =
a(x)b(x) with 1 ≤ deg(a), deg(b) < deg(g). Show that neither a(x) nor b(x)
has an inverse under � in F[x]/(g(x)).

Ex 8.12. Let F be any finite field. Let g(x) be a polynomial that is ir-
reducible in F[x]. Verify that L = F[x]/(g(x)) is a finite field under the
operations of addition and �.

Ex 8.13. Verify that x2 + 1 is irreducible in Z3[x] and use it to construct
a field with nine elements.

Ex 8.14. In Section 8.2 we defined an abelian group. When the requirement
of commutativity is removed, the structure is called a group. Let R be
either a finite field or Zm for some m ≥ 2.

(a) Show that the set S of all 2 × 2 invertible matrices with entries in R
is a finite group under multiplication.

(b) Show that for any A ∈ S there exists a positive integer k such that
Ak = I, which is called the order of A in the group S. (For this, you

248 8. Modular Recurrences

might mimic the argument we used to prove that every invertible
element of Zm has an order.)

Ex 8.15. Find the orbits of x = 3 and x = 4 under S(x) = 12x + 4 on
R = Z21. Formulate a conjecture about the periods of all orbits under this
map. Check your conjecture by computing the orbits.

Ex 8.16. Suppose F, K are finite fields with F ⊆ K, and let q be the
number of elements in F. For α ∈ K, show that α ∈ F iff αq = α. This is a
generalization of Theorem 8.3.6.

Ex 8.17. Let Sn denote the set of all permutations of n elements, where a
permutation means an ordering (or bijection) of the integers 1, 2, . . . , n.
Show that Sn is a group under composition of functions. What is the iden-
tity element in this group?

Ex 8.18. Now consider the action of shuffling a deck of n cards. Every
shuffle of n cards can be viewed as an element of Sn, and so every shuffle
has an order in the group Sn. What is the practical meaning of the order
of a shuffle?

Ex 8.19. For this problem consider S12, the group of shuffles of a deck with
twelve cards. We’ll call a shuffle perfect if the shuffle begins by splitting the
deck into two equal piles and then alternates between the two piles with the
card on the bottom of the original second pile becoming the bottom card.
(This is also called a riffle shuffle or riffling.)For instance, an example of
a perfect shuffle of six cards changes 1, 2, 3, 4, 5, 6 into 4, 1, 5, 2, 6, 3.

(a) Show that after i perfect shuffles, the original first card is in the 2i

position mod 13. After how many shuffles is the first card returned
to its original place?

(b) What is the order of a perfect shuffle in S12?

Ex 8.20. What is the order of a perfect shuffle in S52?

Ex 8.21. (This problem is based on the work of Joseph Keller in [83].)
Consider a riffle shuffle of a deck with k cards. By this we mean cutting
the deck once at random and then riffling together the two parts formed
by the cut. For this we assume that cutting satisfies a uniform distribution,
that is, the probability of any cut is 1/(k − 1). Let pn be the probability
that the original bottom card is on the bottom of the deck after n riffle
shuffles.

(a) Show that p0 = 1 and for all n ≥ 0,

pn+1 =
1
2

(
pn + (1 − pn)

1
k − 1

)
.

(b) Use the theory of linear recurrences to show that

pn =
1
k

+
k − 1

k

(
k − 2

2(k − 1)

)n

.

8.6 Exercises 249

Ex 8.22. For this exercise use F = Zp where p equals the prime 5009.
Without calculating any orbits, find the period of x = 0 under each of
f(x) = 3x + 1; f(x) = 4x + 7.

Ex 8.23. Use induction to show that the number of solutions to any poly-
nomial equation with coefficients in a field is bounded by the degree of the
polynomial.

Ex 8.24. For this exercise, use F = Zp, where p equals the prime 1361.
Check that 3 is a primitive element in F. Find a first–order linear recurrence
mod p whose period is 85.

Ex 8.25. Let A be the companion matrix for the Fibonacci recurrence
mod 6.

(a) What is the order of the matrix A?
(b) Let 〈sn〉 be the sequence that satisfies the Fibonacci recurrence mod 6

and has initial state vector (3, 3). Find the period of this sequence by
considering the sequence mod each of the primes 2 and 3.

Ex 8.26. (a) Use induction to show that the Fibonacci sequence 〈fj〉
satisfies

f2n = fn(2fn−1 + fn) and f2n+1 = f2
n + f2

n+1.

Hint: Verify the two identities in tandem.
(b) Use part (a) to show that the Fibonacci period mod 2n+1 is 3 · 2n.
(c) For this problem let F be the companion matrix for the Fibonacci

recurrence. Show that F 3 = I + 2F and use this to find the period of
the Fibonacci sequence mod 2n.

Ex 8.27. Let R be either Zm or a finite field. Let sn+k = c1sn+k−1 + · · ·+
cksn be a linear recurrence in R with ck an invertible element of R.

(a) Show that the companion matrix is invertible.
(b) If the first k state vectors form a spanning set for Rk, show that the

period of any non-zero solution to the recurrence equals the order of
the matrix.

Ex 8.28. Let F be a finite field and 〈sn〉 a non-zero sequence that satisfies
a homogeneous second–order recurrence in F with s0 = 0.

(a) Show that the period of 〈sn〉 is less than the order of the compan-
ion matrix of the recurrence iff s1s

−1
0 is a root of the characteristic

polynomial of the recurrence.
(b) If F = Zp for some prime p ≡ ±3 (mod 10), show that the period of

any non-zero solution to the Fibonacci recurrence is the order of the
companion matrix.

Ex 8.29. For any m ≥ 2, let X = Z2
m and f(x1, x2) = (x2, x1 + x2 mod

m).

250 8. Modular Recurrences

(a) If t is the period of the usual Fibonacci sequence 〈fj〉, show that

ft−j = (−1)jfj for all 0 ≤ j ≤ t.

(b) If the period of (a, b) ∈ X under f is odd, show that m = 2 must
hold.

(c) Show that (0, 0) is the only fixed point of f .
(d) Show that no orbit of f has period equal to 2.

Ex 8.30. (a) What is the largest period for a sequence that satisfies the
Fibonacci recurrence mod 5?

(b) How many different sequences satisfy the Fibonacci recurrence mod
5?

(c) Show that there is only one non-zero Fibonacci orbit mod 3.
(d) Without calculating any sequences, show that every Fibonacci period

mod 7 must divide 16.
(e) Find a Fibonacci period mod 7 that equals 16.

Ex 8.31. (a) Factor x2 − x − 1 in Z11[x].
(b) Without calculating the actual orbit, find the period of the orbit of

(0, 1) under the Fibonacci recurrence mod 11. Check your answer by
calculating the orbit.

Ex 8.32. This is a problem from the American Mathematical Monthly,
March 1992, page 278.

(a) Given a positive integer m, show that the modular Fibonacci pe-
riod t(m) satisfies t(m) ≤ 6m for all m and that equality holds for
infinitely many m.

(b) Show that an analogous result holds for the Lucas sequence with the
upper bound of 6m replaced by 4m.

Ex 8.33. Find the period of 0 under f(x) = 3x−1 − 2 in Z11 (where 0−1

is defined to be 0). Find an inversive generator in Z11 whose period is 11.

Ex 8.34. Count the number of reducible quadratic polynomials in a field
with q elements, and use that information to show that every finite field
has at least one irreducible quadratic polynomial.

Ex 8.35. (a) Use a Fermat Test to show that 2047 = 211 − 1 is a com-
posite number.

(b) Show that m = 561 is a Carmichael number.
(c) Prove: If m fails the Fermat Test for a = 2, then N = 2m − 1 fails

the Strong Fermat Test for a = 2.

Ex 8.36. (a) Show that the graph of H(x) = − ln(1 − x) lies above the
line y = x by proving that H(x) is an increasing function on [0, 1),
which is concave upward and satisfies H(0)=0 and H ′(0) = 1.

(b) Show that

H
(1

m

)
+ . . . + H

(k − 1
m

)
>

1
m

+ · · · + k − 1
m

=
k(k − 1)

2m
.

8.6 Exercises 251

(c) Use the monotonicity of H(x) and integration by parts to show that

H(0) + H
(1

m

)
+ · · · + H

(k − 1
m

)
<

k2

m
.

Ex 8.37. For any fixed integer m ≥ 2 and any 1 ≤ k < m, let P (k, m)
be the probability that k different elements are chosen from a set with m
elements.

(a) Use the last problem to show that

(8.10) exp
(
−k2

m

)
< P (k, m) < exp

(
−k(k − 1)

2m

)
,

where exp(x) = ex, the usual exponential function.
(b) Prove: If k > 1.39

√
m, then P (k, m) < 1

2 .
(c) Prove: If k < 0.8

√
m, then P (k, m) > 1

2 .

Ex 8.38 (The Birthday Problem). Estimate the probability that at
least two people in a crowd of M people have the same birthday. Estimate
the number of people needed to ensure that this probability is greater than
1/2. What size crowd ensures that the probability is greater than 2/3?

Ex 8.39. Using an analysis similar to Exercise 8.36, show there exists a
constant c such that for sufficiently large n, the partial sum

∑n
i=1

1
i is

approximated by ln(n) + c.

Ex 8.40. Let m ≥ 2 be an integer and f a function defined on Zk for
some k ≥ 1 and s ∈ Zk. Then 〈f (k)(s)〉 is periodic mod m iff there exists
a positive integer n such that

〈f (2n)(s)〉 ≡ 〈f (n)(s)〉 (mod m) .

Ex 8.41. Factor m = 7031 using the Pollard Rho Method with the orbit
of 3 under f(x) = x2 + 1.

9
Computational Complexity

Analysis of algorithms is intimately related to recurrences. In this chapter
we present many algorithms that are recursive in the sense that they call
themselves. We’ll see that the analysis of each algorithm quickly leads to
a recurrence that we can solve using the techniques of the previous chap-
ters. The solution of the recurrence then provides information about the
amount of resources used by the algorithm. We will also see that many
easily stated unsolved problems are close to the edge of standard material.
The analysis and improvement of basic algorithms provides a treasure chest
of research problems that are fun (and maybe even profitable) to solve and
are accessible to students.

An algorithm is a procedure that solves a problem and is suitable for im-
plementation as a program on a digital computer. This informal definition
makes two important points. First, an algorithm solves a problem. There
are computer programs that never terminate, and it would be very difficult
to say whether such a program does anything, let alone solves a problem.
Second, each step of the algorithm should be well-defined and should be
representable, at least in principle, by a program. For example, s := p/q is
not well-defined if q is allowed to be zero. Also, “Find the smallest x ∈ X
for which the statement P (x) is true” is not necessarily well-defined, since
it depends on the truth value of the statement P (x) and the set X . For
instance, if P (x) were true for all negative integers, then “Find the smallest
x ∈ X for which the statement P (x) is true” is not well-defined for X = Z

but is well-defined for X = N.
For our purposes and for many purposes, the above somewhat informal

definition of algorithm is sufficient. Formal definitions of the term “algo-

254 9. Computational Complexity

rithm” were created by Turing, Markoff, and others (refer to [138]). It’s
very satisfying that all these formal definitions of algorithm define the same
class of algorithms: When A is an algorithm in one of these senses, then in
every one of the other senses there exists an algorithm that is equivalent
to A.

9.1 Analysis of Algorithms

The analysis of an algorithm attempts to assay the amount of resources
used by the algorithm. For any solvable problem there are an infinite num-
ber of algorithms that solve the problem, so how do we decide which is
the best algorithm? An obvious idea is that best means uses the fewest
resources. Typical resources are time and space, and in this chapter our
analyses concentrate on time.

An abstract world of abstract computers and abstract programs is con-
structed from the real world of actual computers and actual computer
programs. This construction is rarely formal, because exact definitions of
abstract entities are often not stated. A number of real-world limitations
disappear in the abstract world. For example, real computers have a fixed
finite memory size and there’s an upper bound on the size of numbers that
can be represented by the computer. In the abstract world these limitations
don’t exist. There, computers are assumed to have finite but unbounded
memories with no bound on the size of numbers that can be used. In prac-
tice, there are examples of algorithms that work relatively quickly when
arbitrarily large numbers are used, but implementing them on real com-
puters results in much slower algorithms. These algorithms make perfect
sense in the abstract world, but have little or no relevance for the real
world.

9.1.1 Measuring run time

We want to know how much time it takes an algorithm to perform a partic-
ular task. For a real computer program this can be done using a stopwatch
to time the execution of the program. This elapsed time is often called the
wall clock time. Another way of timing a real program is to use your
computer’s TIME command so that the computer types out the time used
when the program is run. This time measure is often called CPU1 time
and may differ drastically from wall clock time.

Both wall clock time and CPU time suffer from the real-world problem
of inexact repeatability. Two different runs of the same program may not
take the same amount of time, although it is certainly possible to gather

1CPU means Central Processing Unit.

9.1 Analysis of Algorithms 255

valid statistical data. A more serious problem is that both wall clock time
and CPU time are highly dependent on the exact hardware and software
implementation used, as well as on the input data. Specifically, if you change
operating systems or run the program on a different computer or change
the input data, you will often be unable to reliably predict how long the
“same” program will take to run.

We want to call an algorithm faster (it uses less time) than another
algorithm if when we run the two algorithms on a computer the faster
one always finishes first. To make this a fair test some variables have to
be removed. For example, we’d have to code the two algorithms in the
same programming language; compile the two programs using the same
compiler; run the two programs under the same operating system on the
same computer and not interfere with either program while it’s running.
In practice, even if we could control all these conditions, to our chagrin we
might find that algorithm A is faster under conditions C, while algorithm
B is faster under conditions D.

To avoid this unhappy situation we calculate unitless time. For this we
find the run time T (n) as a function of n, where n is some measure of the
size of the problem. For example, we could use the number of digits as the
measure of problem size if the problem is addition of two integers. We could
use the number of elements in a list if the problem is to sort a finite list.
We could use the number of edges (or the number of vertices) in a graph if
the problem is to determine whether a finite graph has a certain property.
We consider two algorithms to use the same time if their run times have
the same order. For our purposes, two run times T1(n) and T2(n) in the
variable n have the same order when T1(n) = Θ(T2(n)), where Big-Theta is
the notation defined in Chapter 1; namely, the statement T1(n) = Θ(T2(n))
means that there exist positive constants c1, c2 such that for all sufficiently
large n,

c1T1(n) ≤ T2(n) ≤ c2T1(n) .

In particular, “having the same order” doesn’t distinguish between algo-
rithms whose run times are constant multiples of each other.

It’s worthwhile to discuss Big-Theta notation further. Assume that A is
an algorithm and that the size of the input data for A is represented by the
variable n. A typical result might be that A has run time Θ(n2). Since we’re
using unitless time, we have no idea what this means in terms of seconds or
nanoseconds. Indeed, we can think of the time unit as an unknown function
of many details, among them the machine and the programming language.
For example, the fact that the run time is Θ(n2) allows us to reasonably
predict that when all these details are kept constant, doubling the size of
the input will quadruple the run time of A.

There is even more hidden in Θ-notation. Because it’s asymptotic, the
above prediction might not be valid unless n is quite large. For example, the
actual CPU time for n = 2 can be the same as for n = 1 when the output

256 9. Computational Complexity

for these values is computed by a table lookup. Further, for some programs
the squaring prediction might be valid for n ≥ 100, whereas for others the
prediction might be valid only for n ≥ 1024 or some larger number.

So how is the measure of run time used to compare two algorithms?
Assume for the moment that algorithm A has run time Θ(n2) and that
algorithm B has run time Θ(n log n). If we program these two algorithms,
will the program for B be faster than the program for A? Yes, but only
for large enough n. Depending on the constants implicit in the Θ notation,
it may be that B is faster than A only for n > 1023, in which case for
reasonably sized data the “slower” A might actually be faster.

To summarize, if we find that the order of the run time for algorithm A
is strictly less than that for algorithm B, then we can be confident that for
any large enough problem A will run faster than B. On the other hand, if
the run times of A and B have the same order, then we won’t be able to
predict which one will be faster for any given input.

9.1.2 An example: The Towers of Hanoi puzzle

In this section we illustrate the above discussion by looking at a concrete
example, the run time of an algorithm for solving the Towers of Hanoi
puzzle.

Ball’s Mathematical Recreations and Essays [5] contains one of the first
mathematical formulations of the Towers of Hanoi puzzle. The puzzle con-
sists of three towers or pegs (usually called A, B, C), and n disks of different
sizes (numbered 1 through n) such that the ith disk is larger than the jth

disk whenever i > j. Initially, the disks are stacked on Tower A in order
of size, with the largest disk on the bottom and the smallest on top. The
problem is to move the stack of disks from Tower A to Tower C, moving
the disks one at a time in such a way that a larger disk is never stacked
above a smaller disk. (Refer to Figure 9.1.) An extra constraint is that the
sequence of moves should be as short as possible. An algorithm is therefore
said to solve the Towers of Hanoi problem if when we input the number of
disks and the names of the three towers, the algorithm returns a sequence
of moves that conforms to the above rules.

..

.

n - 1

1

n
Final Configuration

..

.

n - 1

1

n
Initial Configuration

FIGURE 9.1. The Towers of Hanoi Puzzle.

9.1 Analysis of Algorithms 257

Three simple observations form the key to the problem. The first is that
moving the largest disk requires all other disks to be out of the way; that
is, the other n − 1 smaller disks must be located (in the proper order) on
some other tower. In order for the final result to be stacked on Tower C,
Tower C must be free for the largest disk, and so the n− 1 disks have been
moved from Tower A to Tower B, which is the Towers of Hanoi puzzle for
n−1 disks. After the largest disk is moved to Tower C, the other n−1 disks
must be moved from Tower B to Tower C, which is again the Towers of
Hanoi puzzle for n−1 disks. This recursive procedure leads to the following
recursive algorithm.

PROCEDURE HANOI(A, B, C, n)
IF n = 1 THEN Move the top disk from A to C

ELSE HANOI(A, C, B, n− 1)
Move the top disk from A to C
HANOI(B, A, C, n− 1).

This is called a recursive procedure because it calls itself. Also, unlike the
worm Ouroboros, it doesn’t endlessly swallow its own tail. Each time it calls
itself it decrements the size parameter n by 1, which means that eventually
the sequence of calls “bottoms out” with a call to HANOI with n = 1. This
call makes one move and then returns to the previous call. The operation
of this algorithm can be seen in Figure 9.2, where we give the sequence of
calls and the states of the puzzle for n = 3.

There’s one point in the trace that might seem at least slightly strange:
How did the Move from A to C in the algorithm give Move from C to B
in the trace? The answer is that “A” in the algorithm refers to the first
parameter in the call, and “C” refers to the third parameter in the call. So
when Move from A to C is referred to within a call to HANOI(C,A,B,n), it
makes a move from C to B in the execution of the solution of the puzzle.

Now that we have an algorithm for solving the Towers of Hanoi puzzle,
let’s analyze its run time. Because we’re calculating unitless time, we don’t
need to know how long it takes to perform operations such as moving a disk
or issuing a procedure call. We do have to distinguish between operations
that take a constant amount of time (that is, time that is independent of the
value of n) and operations whose run time depends on n. Aho, Hopcroft,
and Ullman in [2] call the assumption that each operation takes the same
amount of time the uniform cost criterion. Under this condition the run
time T (n) used for n disks satisfies the first–order recurrence

(9.1) T (n) = 2T (n− 1) + c for all n > 1 ,

where c is a positive constant. This is true because within the procedure
for n disks there are two calls to the procedure for n − 1 disks, and the

258 9. Computational Complexity

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

Move from A to C

HANOI(B,A,C,2)

HANOI(B,C,A,1)

Move from B to A

Move from B to C

Move from A to C

HANOI(A,B,C,1)

3 2

3 2
1

3
2
1

3
2

2
1

2 3

3

1

1 3
2

3
2
1

HANOI(A,B,C,3)

HANOI(A,C,B,2)

HANOI(A,B,C,1)

HANOI(C,A,B,1)

Move from A to C

Move from A to B

Move from C to B

1

1

FIGURE 9.2. Trace of the program HANOI for n = 3.

9.1 Analysis of Algorithms 259

constant c is the sum of the constant run times for the various operations.
From the work in Chapter 3 we know that (9.1) has the solution

T (n) = T (1)2n−1 + c(2n−1 − 1) ,

and so
T (1)

2
2n ≤ T (n) ≤ T (1) + c

2
2n ,

which gives T (n) = Θ(2n).
Instead of assuming the uniform cost criterion, we could have assumed

that the run time is proportional to the number of moves. Under that as-
sumption, our argument could proceed as follows. Let M(n) be the number
of moves performed when the algorithm is called with n disks. Then

M(1) = 1 and M(n) = 2M(n− 1) + 1 for all n > 1 ,

which has the solution M(n) = 2n − 1. Because the run time T (n) is
proportional to M(n), then T (n) = Θ(M(n)) = Θ(2n), which is the same
as we obtained above.

In our analysis of the algorithm HANOI we’ve made several other assump-
tions that bear examination. In any actual implementation on a real digital
computer, the number n needs to be stored and manipulated internally. The
time required for this is at the very least dependent on the number of com-
puter words required to represent n, but our argument assumed that each
operation takes a constant time, independent of n. In addition, representing
a state of the puzzle in a computer’s memory requires increasing memory
as n increases and, presumably, increasing time to manipulate this memory.
All of the operations in HANOI depend on the space needed to store n in
memory, and this is proportional to the number of bits needed to represent
n, which is �log2 n�. We can ignore the ceiling function and consider space
to be proportional to log n, where the constant of proportionality depends
on the word size of the computer. Aho, Hopcroft, and Ullman [2] call this
the logarithmic cost criterion and suggest that it should be used when
the numbers in the algorithm don’t have fixed bounds. Using this criterion,
the run time for the n-disk puzzle is

T (n) = 2T (n− 1) + c log(n) ,

with initial condition T (1) = t1. (As above, c and t1 are unknown positive
constants.) Again referring to Chapter 3, the solution to this recurrence is

T (n) = 2n

[
t1
2

+ c
n∑

i=1

log i

2i

]
,

where each summand is positive, and the sum is therefore less than the
infinite sum

0 <

n∑
i=1

log i

2i
≤

∞∑
i=1

log i

2i
,

260 9. Computational Complexity

which converges by the Ratio Test. The sum is bounded above and below
by positive constants, and

c12n ≤ T (n) ≤ c22n ,

where for instance c1, c2 can be chosen as c1 = t1
2 and c2 = t1

2 +c
∑∞

i=1
log i
2i .

So again T (n) = Θ(2n). The increase in operation time due to the size of n
therefore has no effect on the order of our estimate of the run time, because
any changes were absorbed into the “implied constant” in Θ(2n).

If we consider building a physical Towers of Hanoi puzzle and the time
to move disk n grows as some function g(n), we would have

T (n) = 2T (n− 1) + g(n) .

Provided the eminently reasonable assumption that g(n+1) < 2g(n) holds
for all sufficiently large n, a modification of the above argument again yields
T (n) = Θ(2n). From this we see that the conclusion that HANOI has Θ(2n)
run time is robust: Specific details of the implementation of the algorithm
have no effect on the run time. Table 9.1 gives some actual run times and
compares them to the predicted run time c 2n, where c is computed as
c = T (10)/210. Notice that the ratio T (n)/T (n − 1) is approximately 2,
which is consistent with T (n) = Θ(2n).

TABLE 9.1. Run times for the HANOI Algorithm showing the predicted Θ(2n)
behavior.

Run Times for the HANOI Algorithm
n Number of Moves Actual Time Predicted Time T (n)/T (n− 1)
5 31 10 74
6 63 30 147 3
7 127 230 294 7.7
8 255 250 589 1.1
9 511 1287 1178 5.1

10 1023 1810 2355 1.4
11 2047 4270 4708 2.4
12 4095 10471 9421 2.5
13 8191 19398 18842 1.9
14 16383 39447 37683 2.0
15 32767 77669 75364 2.0
16 65535 147832 150733 1.9
17 131071 301652 301466 2.0

While our recursive algorithm solves the Towers of Hanoi problem, there
are many other algorithms that also solve this problem. For example, Bune-
man and Levy [19] give a compact iterative algorithm for Towers of Hanoi.

9.2 Computer Arithmetic 261

Among the variety of algorithms for this problem, is there a best algorithm?
We don’t want to go deeply into this question, but obviously the answer
to this question depends on the definition of best. For Towers of Hanoi, it
can be shown that every algorithm must use at least Ω(2n) time. So, if best
means least-time order, our recursive algorithm is best. But the Buneman
and Levy algorithm with a reasonable data structure can also be shown to
have Θ(2n) run time and so is another best algorithm. So, there can be more
than one best algorithm. Cull and Ecklund [41] consider a variety of Towers
of Hanoi algorithms and show that every Towers of Hanoi algorithm must
use at least Ω(2n) time and at least n − c bits of space, for some constant
c. They give an algorithm that simultaneously achieves these lower bounds
on time and space.

We close this section with a problem from the Advanced Problem Section
of the June–July 1939 issue of the American Mathematical Monthly (page
363), in which B.M. Stewart proposed a generalization of the Towers of
Hanoi puzzle to any number k ≥ 3 of towers.

Given a block in which are fixed k pegs and a set of
n washers, no two alike in size, and arranged on one
peg so that no washer is above a smaller washer. What
is the minimum number of moves in which the n washers
can be placed on another peg, if the washers must be moved
one at a time, subject always to the condition that no
washer be placed above a smaller washer?

Two years later, two solutions to the problem were published in the Ad-
vanced Problems Section of the March 1941 issue of the same journal (pages
216–217). These solutions yield algorithms for solving the Towers of Hanoi
puzzle for k towers. Many people believe that these are optimal, but a proof
of optimality is still an open question after 60 years. We close this section
with a comment from a March 2002 interview with Donald Knuth [87, p.
321]. “In the case of the 4-peg ‘Tower of Hanoi’, there are many, many ways
to achieve what we think is the minimum number of moves, but we have
no good way to characterize all solutions. So that’s why I personally came
to the conclusion that I was never going to solve it, and I stopped working
on it in 1972. But I spent a solid week working on it pretty hard.”

9.2 Computer Arithmetic

Binary representation is usually used to store an integer on a digital com-
puter, and the number of bits for the representation of N is �log2(N)�. This
is then broken into blocks that fit into the internal words of the computer’s
memory and that are stored as some sort of list. Every machine has a limit
on the size of integers that can be represented in this fashion. In many
classical integer data types this was limited to one or two machine words,

262 9. Computational Complexity

whereas many present-day applications require no pre-set bounds on the
size of integers.

In any storage scheme there are details that are specific to the machine
and the operating system. Among these are the word size and the manner in
which the list is stored. In analysis of algorithms these details are avoided by
considering the number of bit operations required to perform a calculation.
A bit operation is either a unary operation (an operation performed
on one bit, such as reversing a single bit) or a binary operation (an
operation on two bits, such as addition). We assume that the run time is
proportional to the number of bit operations. In order for this to make
sense, the operations on words must introduce a constant multiple to the
run time, and our run time estimates are not dominated by the overhead
required for keeping track of the list structure.

9.2.1 Addition and subtraction

How long does it take to add two n-bit natural numbers M and N? That
is, how many bit operations are required to add the integers? For instance,
consider the algorithm we all use for adding two binary representations by
hand. The maximal number of bit operations for the sum is n additions
with carries. If we write the carry bits in a row above the rows containing
M and N , this row always has a zero in the rightmost bit and extends
at most one place to the left. Taking this into account, at most 2n bit
operations are used to perform the addition of two n-bit integers.

On the other hand, it takes at least n bit operations to write down the
number M + N . This is true even in the extreme case in which one of the
summands is zero and we know a priori that the sum is just equal to the
other integer. Because of this, n is a lower bound on the number of bit
operations needed to add M and N . Since M − N = M + (−N), the cost
of subtracting N from M equals the cost of adding N to M plus the cost
of negating N . Since negation can be accomplished in n bit operations, we
conclude that the time required to add or subtract two n-bit integers is
Θ(n).

9.2.2 Multiplication and division

The standard algorithm used for hand computation of the product M ∗ N
in binary involves multiplying M by each bit of N (resulting either in 0
or M in binary), stacking up the results with appropriate left shifts, and
then adding entries in the stack. For example, to compute 7 ∗ 5 = 35 the
standard algorithm is

9.3 An Introduction to Divide-and-Conquer 263

1 1 1
∗ 1 0 1

1 1 1
0 0 0

1 1 1
1 0 0 0 1 1

.

When M and N are n-bit integers, this algorithm requires n additions of
integers that have at most 2n bits, and the complexity of this standard
algorithm is Θ(n2).

This is not the best algorithm for integer multiplication, since there’s
an easily implemented algorithm that has complexity Θ(nlog2(3)) (refer
to Exercise 9.18). There’s also another algorithm, due to Schönhage and
Strassen [145], which has asymptotic complexity O(n log n log(log n)) and
therefore its run time has order only slightly larger than the order of ad-
dition. However, because the constant involved in the Big-Oh notation is
large, the Schönhage-Strassen algorithm isn’t better than the more straight-
forward algorithm until n is quite large.

What about the cost of division? Later in this chapter (section 9.4.4) we
will use Newton’s method to design an algorithm for division that has the
same run time as multiplication.

9.3 An Introduction to Divide-and-Conquer

Historically, the idea of divide-and-conquer is often attributed to Julius
Caesar [173]. In the context of problem solving, divide-and-conquer may
reasonably be attributed to René Descartes [49, 50], the same Descartes
whose Rule of Signs was used in Chapter 5 to prove that every nonnegative
polynomial has only one positive root. The keystone of Descartes’ analytic
method is to break a complicated problem into easier constituent parts and
then to solve the individual parts. An understanding of the complicated
problem is then built up from the solution of its parts. In How to Solve
It [129], George Pólya stressed that breaking down a problem into several
smaller problems of the same kind is a typical step in solving a mathemat-
ical problem, and he further pointed out that this sort of analysis easily
leads to an inductive proof of the correctness of the solution. In the 1930’s,
philosophers such as Gödel, Kleene, and Ackermann recognized the central
role of this recursive technique, and their theoretical analyses led Turing
to describe an abstract digital computer. Eventually, Turing machines
were embodied as physical digital computers, and the problem of program-
ming these computers led back to the divide-and-conquer technique. (For
example, refer to [172] and [102].)

The term divide-and-conquer algorithm is now usually reserved for
the design strategy that solves a problem of size n by solving several prob-

264 9. Computational Complexity

lems of size n/c for some constant c, so that in its current usage the “di-
vide” means that there is an actual division of the problem size. The HANOI
algorithm that we discussed in Section 9.1.2 is not a divide-and-conquer al-
gorithm in this sense because it uses subproblems of size n − 1. (Perhaps
a better term for this type of algorithm is subtract -and-conquer?) Many
commonly used divide-and-conquer algorithms split the problem into two
subproblems, each having half the size of the original problem. Because
such an algorithm cannot divide indefinitely, we specify a size limit above
which the problem is divided and below which the algorithm calls another
algorithm that solves the small-size instances. The solutions are then com-
bined to give a solution to the original problem.

The recursive structure of a divide-and-conquer algorithm leads directly
to an inductive proof of correctness and also to a recurrence for the run
time of the algorithm.

9.3.1 Example: Polynomial multiplication

Let’s look at an example that makes this discussion more concrete. Our
example is polynomial multiplication (or convolution), where the
output is the one polynomial that is the product of two input polynomi-
als. We assume an arithmetic model of computing, which means both
that our computer can perform arithmetic operations and that we want an
algorithm that multiplies the two input polynomials using only arithmetic
operations on the coefficients. As above, the run time for an algorithm is
the number of arithmetic operations used in the algorithm.

Assume that each input polynomial has degree n − 1 and hence n co-
efficients, which we record in a vector with n components. The output
polynomial then has degree 2(n − 1), recorded as a vector with 2n − 1
components. The standard algorithm for multiplying polynomials is sim-
ilar to the standard algorithm for multiplying integers. If P (x) and Q(x)
are the input polynomials, multiplication proceeds by multiplying P (x) by
the constant coefficient of Q(x), shifting one space to the left, multiplying
P (x) by the linear coefficient of Q(x), and so on. This results in n vectors,
which are added componentwise to get the final result. Here’s an example
that multiplies two quadratic polynomials in this fashion:

2x2 + 3x − 7
3x2 − 2x + 2
4x2 + 6x − 14

− 4x3 − 6x2 + 14x
6x4 + 9x3 − 21x2

6x4 + 5x3 − 23x2 + 20x − 14

.

This method for multiplying two polynomials has run time Θ(n2) because
each of the n2 table entries is a product of two coefficients and each table
entry occurs once as a summand.

9.3 An Introduction to Divide-and-Conquer 265

An algorithm for polynomial multiplication

FOR i := 0 TO n − 1 DO
FOR j := 0 TO n − 1 DO

ci+j = ci+j + ai ∗ bj

Let’s construct a divide-and-conquer algorithm for this problem. The
basic philosophy of a divide-and-conquer approach to polynomial multi-
plication is to think of the input polynomial as constructed from several
smaller polynomials. In practice, we divide each polynomial “in half,” and
for simplicity we first consider polynomials with an even number of coeffi-
cients, say n = 2m. Then we can write

P (x) = a2m−1x
2m−1 + · · · + a1x + a0 = xmP1(x) + P0(x) ,

where each of the polynomials P1(x) = a2m−1x
m−1 + · · ·+am+1x+am and

P0(x) = am−1x
m−1 + · · ·+a1x+a0 has m = n/2 coefficients. (For example,

if P (x) = 5x3 + 12x2 + 7x + 8, then P1(x) = 5x + 12 and P0(x) = 7x + 8.)
Splitting both input polynomials P (x) and Q(x) of degree 2m in this way
and suppressing the argument variable x results in

PQ = (xmP1 + P0)(xmQ1 + Q0) ,

giving

(9.2) PQ = xnP1Q1 + xm[P1Q0 + P0Q1] + P0Q0 .

Since multiplying a polynomial by an integer power of x simply shifts the
sequence of coefficients, the original problem of finding the product PQ has
been reduced to the four subproblems of finding the products P1Q1, P1Q0,
P0Q1, and P0Q0.

Because m (and also the original n) might be odd, we will need to modify
this procedure to get a divide-and-conquer algorithm that works for any
pair of polynomials. Only a slight modification is needed. Let n − 1 equal
the maximal degree of the factors P (x), Q(x) and define k ≥ 1 to be the
least exponent such that 2k ≥ n, that is, k = �log2(n)�. Filling in zero
entries where necessary, we treat P (x) and Q(x) as polynomials with 2k

coefficients. Dividing each of P (x) and Q(x) into their polynomial halves,
we obtain four subpolynomials having 2k−1 coefficients. We continue this
subdivision process for k stages, or for as long as we have more than one
coefficient. When we reach the stage at which each subpolynomial has one
coefficient, we multiply the pairs of constants that remain. Equation (9.2)
is then used to retrace the steps and arrive at the product polynomial.

The run time analysis for this divide-and-conquer algorithm is fairly sim-
ple. From the first division we obtain four subproblems, each a multiplica-
tion of polynomials of degree 2k−1. The multiplications by x2k

and x2k−1

266 9. Computational Complexity

are shifts in the coefficient vectors and are easily carried out before the
vectors are added. Therefore, if T (n) denotes the time needed to multiply
two polynomials with n coefficients (where we consider n = 2k), then

(9.3) T (n) = 4T (n/2) + bn ,

where 4T (n/2) represents the time needed to multiply the four half-size
polynomials, and the bn term comes from the time needed to shift and add
the results. If we were doing an exact operation count we’d write down an
explicit value for b. However, since we don’t know the actual time required
for coefficient addition or multiplication, we simply assume that b is some
positive constant.

Notice that the recurrence (9.3) is not one of our usual linear recurrences,
because T (n) depends on T (n/2) rather than on T (n − 1). Despite this
novelty, it’s possible to convert (9.3) to a linear recurrence. For this, we
exploit the fact that n is assumed to be a power of 2. Introducing the new
variable tk = T (2k), (9.3) becomes

tk = 4tk−1 + b2k with t0 = T (1) ,

a nonnegative recurrence with dominant eigenvalue λ0 = 4. It has the form

tk = 4tk−1 + bλk
1 , where λ1 < λ0 ,

and Theorem 5.5.3 implies that tk = Θ(4k), giving T (n) = Θ(n2) when n
is a power of two. What about other n’s? Even when n is not a power of
two, we’ve already established that we can write the factors as polynomials
with 2k coefficients where k = �log2(n)�, and a polynomial with 2k−1 can
be treated as a polynomial with n coefficients, so we have

T (2k−1) ≤ T (n) ≤ T (2k) ;

and since T (2k) = Θ(n2),

c2n
2

4
≤ c2

(n

2

)2

≤ c222(k−1) ≤ T (n) ≤ c122k ≤ c1(2n)2 ≤ 4c1n
2

and T (n) = Θ(n2). What’s the point of developing this algorithm when
we already have an easy-to-understand iterative algorithm with run time
Θ(n2)? The answer is that a further examination of this algorithm will
allow us to a make a slight modification that speeds things up.

Returning to the formula in (9.2) we notice that for two of the half-size
products, P1Q0 and P0Q1, only their sum and not the separate products
is needed. This is important, because there’s a way to calculate their sum
without calculating both products! The trick is to use subtraction and the
polynomial identity

(9.4) P1Q0 + P0Q1 = (P1 + P0)(Q1 + Q0) − P1Q1 − P0Q0 .

9.3 An Introduction to Divide-and-Conquer 267

Since each of P1 and P0 has n/2 coefficients, so does their sum P1 + P0.
Similarly, Q1 + Q0 has n/2 coefficients, and their product can be com-
puted with two half-size polynomial additions and one half-size polynomial
multiplication. Since we also need both of P1Q1 and P0Q0, the product
(P1 +P0)(Q1 +Q0) can be computed with three multiplications, four addi-
tions, and two subtractions of half-size polynomials. So we’ve replaced one
of the multiplications in the earlier algorithm with four additions and two
subtractions. This would be a loss if these operations all had the same cost.
But the operations are polynomial operations, and additions and subtrac-
tions cost Θ(n), while multiplications (so far) have cost Θ(n2). Therefore,
the gain is enormous. We obtain the recurrence

(9.5) T (n) = 3T (n/2) + Bn ,

where the constant B in this equation is slightly larger than the constant
b in the previous recurrence (9.3). It’s easy to check that

T (n) = a nlog2(3) − 2Bn

satisfies this recurrence for some constant a that depends on the initial
condition. Therefore, T (n) = Θ(nlog2(3)), where log2(3) ≈ 1.5849, and this
new algorithm is faster than Θ(n2) for large enough n. (In Exercise 9.18
you see that this algorithm can be used to obtain the promised Θ(nlog2(3))
multiplication algorithm for integers.)

What about the implied constant in this algorithm as compared with
the one in the standard algorithm? Table 9.2 records a comparison of the
run times for the two algorithms for various pairs of polynomials with n
coefficients. In these examples we were careful to use polynomials with
small-integer coefficients so that the efficiency of either algorithm is unaf-
fected by the size of the coefficients. Before we use the data to estimate
the constants, we should ask if the data is consistent with with the pre-
dicted leading term of our run time formulas. For this, we can look at the
ratio T (2n) / T (n). For an Θ(n2) algorithm this ratio should approach 4,
while for an Θ(nlog2 3) algorithm this ratio should approach 3. The data
shows that for n ≥ 512, these ratios are reasonably close to their predicted
asymptotic values. To estimate the leading constants, we can use the ratios
TI(n) / n2 and TR(n) / nlog2 3. For the larger values n, these ratios settle
down and so we can come up with approximate asymptotic run time for-
mulas: TI(n) ≈ .00047 n2 and TR(n) ≈ .03 nlog2 3. In conclusion, this data
shows that the “faster” algorithm will be faster, but only for rather large
n, and the data is sufficient to give formulas which allow us to predict the
run times of these implementations, but again only for large values of n.

268 9. Computational Complexity

TABLE 9.2. Comparison of the run times for two polynomial multiplication algo-
rithms. The iterative algorithm is the classical method with run time Θ(n2). The
recursive algorithm is the half-size method with run time Θ(nlog2 3). The ratios
of T(2n)/T(n) are very close to the predicted values of 4 and 3. The “faster”
algorithm catches up to the “slower” method for large n.

Run Times for n-coefficient Polynomial Multiplication.
n Iterative Time (ms) n Recursive Time (ms)
2 0 2 0
4 0 4 0
8 0 8 0

16 0 16 0
32 0 32 15
64 0 64 31

128 15 128 78
256 31 256 218
512 140 512 625

1024 500 1024 1875
2048 2000 2048 5578
4096 8000 4096 16812
8192 32000 8192 50438

16384 128094 16384 151578
32768 512376 32768 454734

9.4 Simple Divide-and-Conquer Algorithms

Each of the divide-and-conquer algorithms examined in the last section
led to a recurrence relation for its run time. There was a strong similarity
between the two arguments, which we can generalize to derive a recurrence
for the run time of a whole class of divide-and-conquer algorithms. The
recurrences (often called divide-and-conquer recurrences) have three types
of solutions, and we give examples of algorithms that illustrate each type.

In each of our two previous examples, the problem of polynomial multi-
plication was split into two subproblems of the same type that were half the
original size. Here we generalize this slightly and assume that a problem of
size n is split into several (say a) subproblems, each of size n/c for some
constant c. For many divide-and-conquer algorithms c = 2 holds, but the
same analysis works for general c.

In some cases the splitting process is easy and has negligible computa-
tional cost, but we want to allow for the possibility that splitting takes
some time. Usually the time-consuming part of a divide-and-conquer algo-
rithm is the combining step, when the answers to subproblems are used to
compute the answer to the whole problem. Here is the general form of a
divide-and-conquer algorithm:

9.4 Simple Divide-and-Conquer Algorithms 269

The general form of a divide-and-conquer algorithm

PROCEDURE DandC(DATA,n,SOLUTION)
IF n is small

THEN Solve by some special algorithm
ELSE SPLIT(DATA,n) into (D1,n/c)

DandC(D1, n/c, S1)
D2 := f2(DATA, D1, S1)
DandC(D2, n/c, S2)
D3 := f3(DATA, D1, S1, D2, S2)
...
Da := fa(DATA, D1, S1, D2, S2, . . . , Da−1, Sa−1)
DandC(Da, n/c, Sa)
SOLUTION:=fa+1(DATA, D1, S1, D2, S2, . . . , Da, Sa)
RETURN(SOLUTION)

Here we’ve allowed for the results of previous subproblems to be processed
and then fed into the next subproblem. The function fa+1 performs the
final combination of results to produce the solution.

An efficient algorithm should have a run time that is bounded by a
function that is polynomial in the size of the input or perhaps the size
of the output. For this reason we assume that the time for splitting and
combining is given by a polynomial in n. Since we’re interested in only
the order of the run time, we can concentrate on the largest term of the
polynomial and assume that the run time for the split and combine steps
is bnm for some positive constant b and some constant exponent m. (For
this to be a polynomial, m must be an integer, but it costs nothing more
to allow m to be any nonnegative real number.)

Under these assumptions the run time for a divide-and-conquer algorithm
that splits a problem of size n into a subproblems of size n/c is given by
the recurrence

(9.6) T (n) = aT (n/c) + bnm

(compare this with (9.3) and (9.5).) The initial condition comes from the
work done by the .algorithm that handles problems of small size. Since the
small-size algorithm is run only on data of bounded size, we can bound
its run time by some positive constant. This allows us to assume that the
initial condition T (1) is positive but otherwise unknown.

As in the last section, we essentially use logarithms to solve the recurrence
in (9.6). Setting n = ck and tk = T (ck), (9.6) becomes

tk = atk−1 + bckm with t0 > 0 ,

270 9. Computational Complexity

a nonnegative difference equation with λ0 = a. From Theorem 5.5.3 we
know that the relative sizes of a and ck yield three different orders of
magnitude for the sequence 〈tk〉 ,

tk =

⎧⎪⎨⎪⎩
Θ(ckm) for a < cm ,

Θ(kckm) for a = cm ,

Θ(ak) for a > cm .

In order to translate this back into the run time T (n) we recall that n = ck

and tk = T (ck), and get

T (n) =

⎧⎪⎨⎪⎩
Θ(nm) for a < cm ,

Θ(logc(n)nm) for a = cm ,

Θ(nlogc(a)) for a > cm .

(The last line follows from the observation that ak = clogc(a
k) = ck logc(a) =

nlogc(a).) Therefore, there are three different types of behavior that can
occur for the run time of a divide-and-conquer algorithm.

Run Time for Divide-and-Conquer Algorithms

Theorem 9.4.1. Suppose that a divide-and-conquer algorithm splits a
problem of size n into a subproblems, each of size n/c, and that the sum of
the run times for SPLIT and COMBINE is a polynomial pm(n) of degree m.
Assuming that T (1) is positive, the run time for the divide-and-conquer
algorithm satisfies

T (n) = aT (n/c) + pm(n) ,

and has order

T (n) =

⎧⎪⎨⎪⎩
Θ(nm) if a < cm ,

Θ(nm log(n)) if a = cm ,

Θ(nlogc a) if a > cm .

9.4.1 Example 1: A return to polynomial multiplication

In our two divide-and-conquer algorithms for polynomial multiplication,
c was equal to 2 because the size of each subproblem was half the size
of the original problem. Since the split and combine operations used only
addition and subtraction of polynomials, their combined run time was a
linear polynomial, giving cm = c1 = 2. The straightforward algorithm had
a = 4 > cm while in the improved algorithm using (9.4), a = 3 > cm,

9.4 Simple Divide-and-Conquer Algorithms 271

and the third case of the theorem applies for both. As we saw earlier, the
algorithm with a = 3 is eventually faster than the one with a = 4, since the
smaller value of a = 3 reduces the run time from Θ(n2) to Θ(nlog2(3)). If
we could somehow further reduce the number of subproblems to a = 2, the
second case would apply and we would have that T (n) = Θ(n logn). No
known divide-and-conquer algorithm for polynomial multiplication has a =
2, but in Section 9.5 we’ll see that a completely different type of algorithm
for polynomial multiplication does achieve the complexity of Θ(n log n).

9.4.2 Example 2: Matrix multiplication

Another problem in which divide-and-conquer leads to a fast algorithm is
matrix multiplication. If two n × n matrices are split into four n/2 × n/2
matrices, we can compute the matrix product using[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
,

where

C11 = A11B11 + A12B21 ,

C12 = A11B12 + A12B22 ,

C21 = A21B11 + A22B21 ,

C22 = A21B12 + A22B22 ,

which uses eight half-size multiplications. Because addition of n×n matrices
can be done in time proportional to n2, the equation for the run time of
this divide-and-conquer algorithm is

T (n) = 8T (n/2) + bn2 .

This equation has a = 8, c = 2, m = 2, giving a > cm and T (n) =
Θ(nlog2 8) = Θ(n3), which is the same as the order of magnitude of the run
time for the standard row-times-column algorithm for matrix multiplica-
tion.

A faster divide-and-conquer algorithm was designed by Strassen [156],
using seven half-size multiplications. Strassen’s algorithm computes the
eight products

M1 = (A12 − A22)(B21 + B22), M2 = (A11 + A22)(B11 + B22) ,

M3 = (A11 − A21)(B11 + B12), M4 = (A11 + A12)B22 ,

M5 = A11(B12 − B22), M6 = A22(B21 − B11) ,

M7 = (A21 + A22)B11 ,

272 9. Computational Complexity

and uses them in

C11 = M1 + M2 − M4 + M6, C12 = M4 + M5 ,

C21 = M6 + M7, C22 = M2 − M3 + M5 − M7 ,

to obtain the product matrix. It is a simple exercise in algebra to prove that
this algorithm is correct; the real difficulty was discovering the algorithm in
the first place! Because addition and subtraction of matrices can be carried
out in time proportional to n2, the run time of Strassen’s algorithm obeys
the equation

T (n) = 7T (n/2) + bn2 ,

and T (n) = Θ(nlog2 7) .

9.4.3 Example 3: MERGESORT

A concrete example of the second type of divide-and-conquer behavior is
the MERGESORT algorithm. In this algorithm the input is a one-dimensional
array with n entries, and the output is the array in which the original entries
are rearranged into increasing order. It is a divide-and-conquer algorithm,
with the array divided into two subarrays that are individually sorted and
then combined to give the sorted array. The following algorithm captures
this approach.

PROCEDURE MERGESORT(A, n)
IF n > 1
THEN Split A into two arrays of size n/2, A1 and A2

MERGESORT(A1, n/2)
MERGESORT(A2, n/2)
MERGE(A1, A2)

When n = 1 is reached there is only one item in the array, and no sorting
needs to be done. All of the real work gets done in the MERGE algorithm,
which combines two sorted arrays A1 and A2 into one sorted array A.
Without going into the details, we’ll say that MERGE can be accomplished
with n − 1 comparisons of entries and n moves. This yields the recurrence

T (n) = 2T (n/2) + bn ,

for some constant b. Since a = 2 and cm = 2, we are in the second case,
and T (n) = Θ(n log n).

9.4 Simple Divide-and-Conquer Algorithms 273

9.4.4 Example 4: Applications of Newton’s method

For an example of the first type of behavior we use Newton’s method to
estimate values of the reciprocal function g(x) = 1/x and the square root
function g(x) =

√
x. These are special cases of estimating functions g(x)

at values x = A when g(x) is a one-to-one function in some neighborhood
of A. The assumption that g(x) is one-to-one ensures that it has a left
inverse f(x) with f(g(x)) = x in a neighborhood of x = A. We further
assume that the left inverse is also one-to-one and twice differentiable in
this neighborhood. These conditions hold for each of g(x) =

√
x and g(x) =

1/x on x > 0. Since A = f(g(A)), any approximation to the solution of
f(x) − A = 0 is close to g(A).

We’ve already used Newton’s method (refer to Section 5.4) to locate the
roots of f(x) = A by iterating

N(x) = x − f(x) − A

f ′(x)
.

For this to be computationally feasible, the right side should be in a form
that’s easy to compute, which for us means that it can be computed in time
that is polynomial in the size of the input. Under reasonable hypotheses
(refer to [20, 155]), when a good initial approximation is used, each iteration
of Newton’s method doubles the number of correct digits. (Also refer to
Theorem 5.4.1.) For instance, if an approximation x agrees with the root
on the first five bits, then N(x) agrees on the first ten bits, and applying
the iteration another time, N (2)(x) agrees on twenty bits, and so forth.
Therefore, for input of size n the run time T (n) satisfies the divide-and-
conquer recurrence

T (n) = T (n/2) + p(n) ,

where the polynomial p(n) records the difficulty of computing N(x) for
the particular function under consideration. Newton’s method is thus a
divide-and-conquer algorithm, provided N(x) can be computed from x in
polynomial time.

Consider the reciprocal function g(x) = 1/x on x > 0, a one-to-one
function that is its own inverse. Since f ′(x) = −1/x2, Newton’s formula
for the iteration is

N(x) = x − 1/x − A

−1/x2
= x(2 − Ax) .

In this form, only two multiplications and one subtraction (and no divi-
sions) of n-bit numbers are required, and the run time satisfies

(9.7) T (n) = T (n/2) + p2(n) ,

for some quadratic polynomial p2(n). Here a = 1, cm = 22 = 4, and we’re in
the first case, with run time T (n) = Θ(n2). Since division of real numbers

274 9. Computational Complexity

can be performed using the algorithm implicit in a
b = a · 1

b , this also yields
an order Θ(n2) algorithm for division.

Finding square roots can also be performed in Θ(n2) time using Newton’s
method. The one-to-one function g(x) =

√
x has the differentiable inverse

function f(x) = x2, which is one-to-one on x > 0. Since f ′(x) = 2x, the
Newton iteration is

N(x) = x − x2 − A

2x
=

x

2
+

A/2
x

,

where A/2 is an easy one-time calculation.2 The complicated part is the
division by x, for which we use the quadratic-time algorithm above. There-
fore, the run time again satisfies (9.7) for some quadratic polynomial p2(x),
and T (n) = Θ(n2).

It’s worth noting that this discussion shows that both division and finding
square roots can be accomplished in the same order of time as multiplica-
tion. Although we have used the standard Θ(n2) multiplication algorithm,
the same argument shows that any multiplication algorithm whose order
is at least Θ(n) yields division and square root algorithms of the same or-
der. The technique of the next section gives a multiplication whose order
is only slightly worse than Θ(n), and this faster multiplication can be used
to speed up both division and square root.

9.5 The Fast Fourier Transform

In our general discussion of divide-and-conquer algorithms we referred to
an algorithm for polynomial multiplication that has order Θ(n logn), and
this section is devoted to a description and explanation of the method. It
is based on the technique known as the Fast Fourier Transform, usually
abbreviated as FFT. The FFT-based polynomial multiplication algorithm
is designed for dense polynomials, polynomials in which almost all of
the coefficients are non-zero. Many large-scale polynomial multiplication
problems involve sparse polynomials and for such problems there are
other algorithms that easily outperform the FFT. So there are practical
issues that must be considered before the theoretically good FFT algorithm
is used.

The key difference between the FFT method for polynomial multiplica-
tion and our earlier methods is that here a polynomial is represented by
some of its functional values rather than by its coefficients. The basis for
the technique is the fact that an (n − 1)st-degree polynomial is uniquely
determined by its values at n distinct points. To see this, consider the eval-
uation of a polynomial f(x) = a0 + a1x + · · ·+ an−1x

n−1 at the n different

2Here it’s helpful to represent numbers in binary notation, because A/2 is just a
binary shift of A and so is computationally trivial.

9.5 The Fast Fourier Transform 275

complex numbers x = λ1, λ2, . . . , λn. Writing this as a matrix equation, we
have

(9.8) (a0, . . . , an−1)

⎡⎢⎢⎢⎣
1 · · · 1
λ1 · · · λn

...
...

...
λn−1

1 · · · λn−1
n

⎤⎥⎥⎥⎦ = (f(λ1), f(λ2), . . . , f(λn)) ,

where the matrix is the Vandermonde matrix V associated with λ1, . . . , λn.
(Refer to Chapter 2.) When the λi are distinct, we know that V is invert-
ible, and accordingly, the coefficients of f(x) satisfy

(9.9) (a0, a1, . . . , an−1) = (f(λ1), f(λ2), . . . , f(λn))V −1 ,

and so the coefficients can be computed from n values of the polynomial.
Such a process is called interpolation, and (9.9) is called an interpola-
tion formula. Schematically, we have the bijections

ValuesCoefficients
Evaluation

Interpolation
defined by

(a0, a1, . . . , an−1)
EVALUATION−−−−−−−−−−→ (f(λ1), f(λ2), . . . , f(λn))

INTERPOLATION−−−−−−−−−−−−−→ (a0, a1, . . . , an−1) ,

where EVALUATION and INTERPOLATION are the processes that take
us from one representation to the other.

For the purpose of polynomial multiplication, encoding a polynomial us-
ing n of its functional values is superior to using its coefficients because to
obtain the corresponding value for the product polynomial we need only
multiply the respective values of the factor polynomials. But there are some
problems. First, the product of two polynomials of degree n−1 is a polyno-
mial of degree 2(n−1), and therefore the product polynomial is determined
by 2n− 1 values. More seriously, you might remember from our discussion
of Horner’s Method in Chapter 5 that in general it takes Θ(n) operations
to perform one evaluation of a polynomial of degree n−1 and hence Θ(n2)
operations to evaluate it n times. In fact, standard interpolation techniques
take Θ(n2) operations to interpolate a polynomial of degree n− 1 through
n generic points. What saves us here is the freedom to choose the n points
in a way that speeds up both evaluation and interpolation.

For example, evaluating f(0) takes no work at all, and evaluating f(1)
takes n additions and no multiplications. Similarly, evaluation of f(−1)
also takes no multiplications, since it’s the sum of the coefficients that have

276 9. Computational Complexity

even indices minus the sum of the other coefficients. When λ1, . . . , λn are
chosen to equal to the nth roots of unity, we will give algorithms for both
EVALUATION and INTERPOLATION that have run time Θ(n log n).

9.5.1 The general form of the Fast Fourier Transform

Using terminology from Chapter 8, the set Gn of nth roots of unity is a
group under multiplication and has n elements. The principal nth root of
unity,

ω = cos(θ) + i sin(θ) for θ =
2π

n
,

has order n in this group, which means that every element of Gn can be
uniquely written as ωj for some j = 0, 1, . . . , n−1. Since 1, ω, ω2, . . . , ωn−1

are all distinct, specializing to λj = ωj−1 in the Vandermonde matrix of
(9.8) gives the n × n invertible (and symmetric) matrix

(9.10) V (ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 ω1 · · · ωn−1

1 ω1·2 · · · ω(n−1)·2

1 ω1·3 · · · ω(n−1)·3
...

...
. . .

...
1 ω1·(n−1) · · · ω(n−1)·(n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Noting that for 0 ≤ i, j < n the dot product satisfies

(1, ωi, . . . , ω(n−1)i) · (1, ω−j, . . . , ω−j(n−1))T = 1 + ωi−j + · · ·+ ω(n−1)(i−j) ,

from (4.36) on page 87 we have

(1, ωi, . . . , ω(n−1)i) · (1, ω−j, . . . , ω−j(n−1))T =

{
n if i = j ,

0 if i = j .

Therefore, the inverse of V (ω) is

V (ω)−1 =
1
n

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 ω−1 · · · ω−(n−1)

1 ω−2 · · · ω−2(n−1)

1 ω−3 · · · ω−3(n−1

...
...

. . .
...

1 ω−(n−1) · · · ω−(n−1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1
n

V (ω) ,

and

(9.11) V (ω)−1 =
1
n

V (ω) =
1
n

V (ω) .

9.5 The Fast Fourier Transform 277

Writing f(x) = a0 + a1x + · · · + an−1x
n−1, A = (a0, . . . , an−1)T , and

Y = (f(1), f(ω), . . . , f(ωn−1))T , equations (9.8) and (9.9) become

(9.12) V (ω)A = Y

and

(9.13) A =
1
n
· V (ω)Y ,

which respectively correspond to EVALUATION and INTERPOLATION.
The very special structure of these matrices will allow us to construct quick
divide-and-conquer algorithms when n is chosen to be a power of 2.

Historically, the term Discrete Fourier Transform (or DFT) was used
for the general idea described above, and Fast Fourier Transform was re-
served for the specific implementation with n = 2k. Nowadays, this distinc-
tion is blurred, and both are referred to as the FFT.

9.5.2 The FFT when n = 2k

We set n = 2k (where k is a natural number), and let Vk denote the
Vandermonde matrix V (ω) constructed using the nth roots of unity as in
(9.10). We assume that the powers of the principal nth root of unity ω have
been found and stored in a table. The FFT also uses the (n/2)th roots of
unity, which are already in the table and are found by proceeding through
the table in steps of size two. We now establish an iterative process for
getting V (ω) from V (ω2). This will allow us to construct fast divide-and-
conquer algorithms for EVALUATION and INTERPOLATION.

The matrices for the first, second, and fourth principal roots of unity are
respectively

V (1) = [1] , V (−1) =
[

1 1
1 −1

]
, and V (i) =

⎡⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤⎥⎥⎦ .

Note that the first column of V (−1) is a stack of two V (1)’s, and its second

column is
(V (1)

−V (1)

)
. Interchanging the second and third columns of V (i)

gives

(9.14)

⎡⎢⎢⎣
1 1 1 1
1 −1 i −i
1 1 −1 −1
1 −1 −i i

⎤⎥⎥⎦ ,

278 9. Computational Complexity

whose first two columns is a matrix stack of two copies of V (−1), and its

last two columns is the stack
(

A
−A

)
, where

A =
[

1 1
i −i

]
=

[
1 0
0 i

]
V (−1).

Although it’s somewhat of a stretch, from this it can be seen that V (i) is
built in two steps. First construct a block matrix of four 2×2 blocks, each of
which is either V (i2) or a product of V (i2) and the diagonal matrix. Then
V (i) is obtained from this matrix by performing a suitable permutation
of columns. The surprising news is that this is the general procedure for
passing from V (ω2) to V (ω)!

In what follows, the indexing of rows and columns of 2k × 2k matrices
will begin with 0. We want to determine the permutation of the columns of
V (ω) that is used. For k = 2, we use the binary representations of 0, 1, 2, 3,

00, 01, 10, and 11 ,

to define the permutation Rev2 obtained by reversing the bits,

00, 10, 01, and 11 .

Applying Rev2 to the column numbers of V (i) interchanges the second and
third columns and keeps the other two fixed, and this is the permutation
we want. What happens for k = 3 is recorded in Table 9.3, where the
first row contains the numbers 0 through 7, the second row their binary
representations, the third row the bit reversals, and the fourth row the
decimal equivalents of these reversed representations. Reading only the top
and bottom rows, the permutation Rev3 of 0, 1, . . . , 7 swaps 1 with 4 and
3 with 6.

TABLE 9.3. The bit reversal permutation on 0, . . . , 7

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
000 100 010 110 001 101 011 111
0 4 2 6 1 5 3 7

For any k the bit reversal permutation Revk of {0, 1, . . . , 2k−1} is ob-
tained by reversing the bits in this way. The definition of Revk immediately
gives that Rev2

k is the identity and that

(9.15) Revk(j) is an even integer ⇐⇒ 0 ≤ j < 2k−1 .

Application of Revk to the column numbers of the 2k × 2k identity matrix
gives a permutation matrix, which we’ll denote by Pk. You can check

9.5 The Fast Fourier Transform 279

that the first three are

P1 =
[
1 0
0 1

]
, P2 =

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ , P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Because Revk is the bit-reversal permutation, Pk has order two in the group
of invertible k×k matrices and is its own inverse. Applying the permutation
matrix Pk on the right of V (ω) gives F (ω) = V (ω)Pk, the matrix obtained
by permuting the columns of V (ω) by Revk. For instance, F (i) is the matrix
in (9.14).

We refer to F (ω) as the Fourier matrix of size 2k. Since the (i, j)th

entry of V (ω) is
vij = ωij ,

then the (i, j)th entry of F (ω) is

fij = ωi Revk(j) .

We use this to show that F (ω) always has the form we’ve already noticed
for F (i).

Theorem 9.5.1. Let ω be any primitive 2k root of unity. Then F (ω) sat-
isfies the recurrence

F (ω) =
[

F (ω2) DF (ω2)
F (ω2) −DF (ω2)

]
,

where D is the diagonal matrix with diagonal entries 1, ω, . . . , ω2k−1−1.

Proof. The indices in the upper left quadrant of F (ω) satisfy 0 ≤ i, j <
2k−1, and (9.15) implies that Revk(j) is even for such j. Because dividing
Revk(j) by 2 removes the least significant bit,

fij = ωi Revk(j) = (ω2)i
Revk(j)

2 = (ω2)i Revk−1(j) ,

and this proves that the upper left quadrant of F (ω) is F (ω2).
In either lower quadrant, the row index satisfies 2k−1 ≤ i < 2k, which

we can write as i = I + 2k−1 for some 0 ≤ I < 2k−1. From this,

fij = ωi Revk(j) = ωI Revk(j) · ω2k−1 Revk(j) = fIj · (−1)Revk(j) .

280 9. Computational Complexity

Because Revk(j) is even in both left quadrants, this proves that the two
left quadrants are the same and also that the matrices that form the two
right quadrants are negatives of each other.

It remains to show that the upper right quadrant is DF (ω2). In that
quadrant the indices satisfy 0 ≤ i < 2k−1 ≤ j, and j = J + 2k−1 for some
0 ≤ J < 2k−1. Since Revk(j) = 2 Revk−1(J) + 1,

fij

ωi
= ωi(Revk(j))ω−i = ωi(Revk(j)−1) = (ω2)i Revk−1(J) ,

which is the (i, J)th entry of F (ω2). This completes the proof.

We will next show that the recursive structure of this Fourier matrix
yields a divide-and-conquer strategy for both EVALUATION and INTER-
POLATION.

9.5.3 Fast evaluation and fast interpolation

Recording the polynomial f(x) = a0+a1x+· · ·+an−1x
n−1 as the coefficient

vector A = (a0, . . . , an−1)T , we recall that (9.12) can be used to obtain the
evaluation vector Y = (f(1), f(ω), . . . , f(ωn−1))T . We have encoded this
in the matrix equation

(9.16) Y = F (ω)PkA ,

and the reverse interpolation process given in (9.13) can be written as

(9.17) A =
1
n
· F (ω)PkY .

So, we see that INTERPOLATION is essentially the same process as EVAL-
UATION ! This means that the analyses of INTERPOLATION and EVAL-
UATION are the same.

To analyze EVALUATION, we first consider the time required to con-
struct PkA. Computing Revk(j) for any 0 ≤ j < 2k = n can be done in
time proportional to the length k, and computing the permutation Revk

takes time O(n log n). Once Revk is known, applying it to A amounts to
swapping pairs of indices (or pointers), and this takes time O(n). Therefore,
the time for finding X = PkA is O(n log n).3

The decomposition of the Fourier matrix F (ω) given in Theorem 9.5.1
suggests a divide-and-conquer strategy for computing Y = F (ω)X . To

see this, we write any X ∈ C2k

as X =
(X1

X2

)
where X1 is the vector

3Many texts ignore the time necessary to compute the permutation, since in practice
it takes very little time compared to the rest of the algorithm. Even if we had to apply
a permutation in every iteration, the asymptotic run time is not affected (for this, refer
to Exercise 9.20).

9.5 The Fast Fourier Transform 281

consisting of the first 2k−1 components of X , and X2 contains the last 2k−1

components. The special form of F (ω) gives

F (ω)X = F (ω)
(

X1

X2

)
=

(
F (ω2)X1 + DF (ω2)X2

F (ω2)X1 − DF (ω2)X2

)
.

Noting that the products F (ω2)X1 and F (ω2)X2 need only be computed
once, we conclude that this decomposition gives a divide-and-conquer al-
gorithm for computing F (ω)X . A schematic description is

A
permute−−−−−→ PkA =:

(
X1

X2

)
half-size−−−−−→

(
F (ω2)X1

F (ω2)X2

)
combine−−−−−→

(
F (ω2)X1 + DF (ω2)X2

F (ω2)X1 − DF (ω2)X2

)
= Y ,

and likewise, INTERPOLATION can be described by the schematic

Y
conjugate and permute−−−−−−−−−−−−−−→ PkY =:

(
X1

X2

)
half-size−−−−−→

(
F (ω2)X1

F (ω2)X2

)
combine−−−−−→

(
F (ω2)X1 + DF (ω2)X2

F (ω2)X1 − DF (ω2)X2

)
= V (ω)Y

conjugate and scale by 1/n−−−−−−−−−−−−−−−−−→ 1
n

V (ω)Y = A .

Note that in this process the matrix F (ω) never needs to be calculated,
because all Fourier matrices in the scheme are simply recursive calls to a
procedure. Also, the diagonal entries of D that are powers of ω have been
stored in an array and can be pulled from the array when necessary.

We’ve already shown that the permutation steps can be done in O(n log n)
time, and we now compute the run time of the divide-and-conquer part.
Since the combine step involves multiplying by a diagonal matrix and
then performing an addition and a subtraction, this step takes Θ(n) op-
erations. Because the problem has been divided into two half-size sub-
problems, the divide-and-conquer recurrence has a = c = 2, and T (n) =
2T (n/2) + bn , which is the second case of the divide-and-conquer formula
in Theorem 9.4.1, and so T (n) = Θ(n log n). Finally, when n is not a power
of two, appending zero coefficients just increases the implied constant in
Θ(n logn). This completes the proof that the FFT multiplies two polyno-
mials of degree at most n − 1 in Θ(n log n) operations.

9.5.4 The fast polynomial multiplication algorithm

The entire algorithm for computing the coefficients of the product of two
polynomials is summarized in the following table.

282 9. Computational Complexity

FFT Polynomial Multiplication

Let f, g ∈ C[x] be polynomials with deg(f), deg(g) < n.

1. Place the coefficients of the polynomial f in the first n components
of a vector A of length 2k+1, where 2k is the smallest power of 2
that is at least n. Set the remaining components of X to zero.

2. Place the coefficients of g into a vector B of length 2k+1.

3. Permute both A and B, obtaining X and Y respectively.

4. For the principal 2k+1-th root of unity ω, use the divide-and-conquer
algorithm to compute both F (ω)X and F (ω)Y .

5. Let Z be the componentwise product of these two vectors.

6. Permute and conjugate Z.

7. Use the divide-and-conquer algorithm to compute F (ω)Z.

8. Conjugate each component of the result in Step 7 and divide by
2k+1. This is the vector of coefficients in the product fg.

The computation is only approximate, because of the round-off in floating
point operations and because we can only use finite approximations to
the powers of ω. The first 2n − 1 components of the output vector are
approximations to the coefficients of the product polynomial. Although all
higher coefficients in the product f g are zero, some of these components
may be non-zero in the output. The size of these extra components gives
some indication of the accuracy of the computation.

Schematically, the algorithm is

Evaluate

Evaluate
Interpolate

COEFFICIENTS

OF PRODUCT

VALUES OF

PRODUCT
Componentwise

Multiply

X

Y

COEFFICIENTS VALUES

Z

FIGURE 9.3. Schematic representation of FFT polynomial multiplication.

Any divide-and-conquer algorithm must specify what is meant by “small”,
the size of problem that is computed “by hand”. In this algorithm, we could
take as the “small case” the constant polynomials, compute their FFT us-
ing no operations, and proceed to the combine step. Other variations are
possible. Since f(±1), g(±1), f(±i), g(±i), can all be computed using no
multiplications, two component vectors or four component vectors can also

9.5 The Fast Fourier Transform 283

be conveniently used as the base case. The choice of base case does not
affect the Big Oh order of the run time, but this choice does affect the
actual run time by changing the constant hidden by the Big Oh.

We illustrate the FFT algorithm by applying it to the simple example of
squaring the polynomial 2 + x. (In the following, we will write the vectors
as rows, even though the description of our algorithm uses column vectors.)
In Step 1, we form the vector (2, 1, 0, 0), and Step 2 is the same for this ex-
ample. In Step 3 we use Rev2 to permute the vectors and obtain (2, 0, 1, 0).
In Step 3 the recursive routine is applied to the two vectors, which we break
into the two vectors (2, 0) and (1, 0). Since

F (−1) =
[

1 1
1 −1

]
,

premultiplication of (2, 0) and (1, 0) by F (−1) gives (2, 2) and (1, 1). We
next premultiply (1, 1) by the diagonal matrix with 1 and i on the diagonal,
yielding (1, i). We now add and subtract this from (2, 2) and place the
results in a vector with four components and get

(2 + 1, 2 + i, 2 − 1, 2 − i) = (3, 2 + i, 1, 2 − i) .

These numbers are supposed to be the values of the polynomial f(x) = 2+x
at x = 1, i, −1, and −i, which indeed they are.

In Step 5 we multiply the two (in our case identical) “value vectors”
componentwise. This amounts to squaring each component of the vector
above, and this yields

Z = (9, 3 + 4i, 1, 3 − 4i) ,

whose coordinates are the values of the polynomial 4 + 4x + x2 at x = 1,
i, −1, and −i. In Step 6 we permute using Rev2 and conjugate to get the
vector

(9, 1, 3 − 4i, 3 + 4i) .

In Step 7 we apply the same recursive algorithm, starting at the above
vector. It splits into (9, 1) and (3 − 4i, 3 + 4i), and these become (10, 8)
and (6,−8i) in the base case of the recursion. We multiply (6,−8i) by the
diagonal matrix with 1 and i on its diagonal to get (6, 8), and then (10, 8)
and (6, 8) are added, subtracted, and placed in the vector

(10 + 6, 8 + 8, 10 − 6, 8 − 8) = (16, 16, 4, 0) .

In Step 8 we conjugate (which has no effect, since our values at this point
are real) and divide by 22 = 4 to get the vector

(4, 4, 1, 0) ,

the coefficient vector for f(x)g(x) = (2 + x)2 = 4 + 4x + x2.

284 9. Computational Complexity

Notice that the FFT multiplies complex polynomials. Some improvement
is possible if all coefficients in both polynomials are real. One minor change
is that it is never necessary to conjugate in Step 6. More significantly, since
the evaluation is done at 2k+1 ≈ 2n complex points, one can pack a pair
of real numbers into one complex number and design a real FFT, which
evaluates at only 2k instead of 2k+1 complex points. (For details on this,
refer to Exercise 9.21 and [2].)

9.6 Average Case Analysis

Until now we’ve considered the run time of an algorithm to be a function of
the input size. In practice, an algorithm might treat all inputs of the same
size in the same way or it could handle some inputs more quickly than
others. Because of this, we define the best case, worst case, and average
case run times for an algorithm. The maximum run time over all inputs of
the same size is called the worst case run time, and the minimum run
time over all inputs of the same size is called the best case run time.
Averaging the run time over all inputs of the same size is called the average
case run time. When the probability associated with each of the various
inputs of a particular size is unknown, it is difficult to calculate the average
case time. For definiteness and simplicity of calculating the average case,
it’s often assumed that each input of a fixed size is equally likely to occur.

9.6.1 The LARGETWO algorithm

Consider the following algorithm, which finds the two largest entries in a
one-dimensional array and assigns these values to the variables FIRST and
SEC.

PROCEDURE LARGETWO(C)
FIRST:= C[1]
SEC:= C[2]
FOR I = 2 TO n DO

IF C[I] > FIRST
THEN SEC:=FIRST ; FIRST:= C[I]
ELSE IF C[I] > SEC

THEN SEC:= C[I]

Note that this algorithm assumes that the array has at least two compo-
nents, and so the results are unpredictable when it is used with a one-
element array.

9.6 Average Case Analysis 285

The ground rules for our run time analysis are that we’ll count the num-
ber of comparisons of array entries and ignore any comparisons of numbers
used to control the FOR loop. Each time through the FOR loop the al-
gorithm makes either one or two comparisons, and so for an n-element
array the algorithm uses at least n − 1 comparisons and at most 2(n − 1)
comparisons. If the data happened to be arranged in order of increasing
coordinates,

C[1] < C[2] < · · · < C[n] ,

the algorithm performs exactly n − 1 comparisons, and this implies that
the best case run time is B(n) = n − 1. The algorithm makes 2(n − 1)
comparisons when C[1] is the largest entry, and this is the worst case, with
run time W (n) = 2(n − 1).

What about the average case? Is it close to worst case, close to best case,
or midway between the worst and best cases? Let A(n) be the number of
comparisons used on average by this algorithm. Since the algorithm begins
with the first entry and proceeds in one direction across the array, we may
reasonably assume that for the first n− 1 entries the algorithm on average
uses A(n−1) comparisons, the same number it uses if the last entry weren’t
there. For the last entry, it uses at least one comparison. If C[n] is not the
largest entry, then C[n] > FIRST is false, and a second comparison must
be made. If C[n] is the largest entry, then C[n] > FIRST is true, and
only that one comparison is made. By our assumption of uniformity, the
probability that C[n] is the largest is 1/n, and from these considerations,
for all n ≥ 2,

(9.18) A(n) = A(n − 1) + 2
(

1 − 1
n

)
+ 1 · 1

n
= A(n − 1) + 2 − 1

n
.

When the array has two entries, uniformity implies that the maximum entry
is equally likely to lie in either entry, and so two comparisons are required
exactly half of the time, giving A(2) = 3/2. Since (9.18) is a first–order
recurrence with eigenvalue λ = 1 and forcing function ψ(i) = 2 − 1/i, the
solution is

A(n) =
n∑

i=2

(
2 − 1

i

)
= 2(n − 1) −

n∑
i=2

1
i

for all n ≥ 2 .

Using the result on the partial sums of the harmonic series given in Ex-
ercise 8.39, A(n) is therefore asymptotically approximated by 2(n − 1) −
ln(n)+ c, where c is some constant. From this we see that the average case
behavior of the algorithm is very close to the worst case, W (n) = 2(n− 1),
especially as compared with the best case run time, B(n) = n − 1. Also,
notice that the average of the worst and best case run times is 3

2 (n− 1), a
severe underestimate of the actual average case behavior.

Here’s another analysis of the average case run time for LARGETWO.
Let C[j] be the maximal entry. From our assumption of uniformity, the

286 9. Computational Complexity

probability that C[j] is the largest entry is 1/n. As noted above, 2(n − 1)
comparisons are made for j = 1. For j ≥ 2 the algorithm performs A(j−1)
comparisons before the loop reaches I = j, then for I = j the loop makes
one comparison, and for each of I = j +1, . . . , n two comparisons are used.
This gives

nA(n) =
n∑

j=2

[A(j − 1) + 1 + 2(n − j)] .

Expanding the sum gives

nA(n) =
n∑

j=2

A(j − 1) +
n∑

j=2

1 + 2
n∑

j=1

(n − j)

=
n−1∑
j=1

A(j) + n − 1 + 2
n−1∑
j=0

j

=
n−1∑
j=1

A(j) + n − 1 + (n − 1)n

=
n−1∑
j=1

A(j) + n2 − 1 .

Therefore, for all n ≥ 2,

(9.19) nA(n) =
n−1∑
j=1

A(j) + n2 − 1 ,

a recurrence that depends on all previous terms. Similarly to some re-
currences in Chapter 4, its solution can be shown to satisfy a first–order
recurrence. Since

(n − 1)A(n − 1) =
n−2∑
j=1

A(j) + (n − 1)2 − 1 ,

subtraction of equations gives

nA(n) − (n − 1)A(n − 1) = A(n − 1) + n2 − (n − 1)2 = A(n − 1) + 2n− 1 ;
nA(n) = nA(n − 1) + 2n − 1 ,

which is the same recurrence found earlier in (9.18).

9.6.2 The QUICKSORT algorithm

Next we consider QUICKSORT, an algorithm whose average case analysis
is more complicated. The algorithm sorts an array S of numbers according

9.6 Average Case Analysis 287

to increasing size (and we allow repeated entries in S). The output of the
algorithm is a sorted string of numbers, and the dots in the RETURN
statement indicate concatenation of strings.

PROCEDURE QUICKSORT(S)
Pick an entry α of S at random.
Divide S into three parts, S1, S2, S3, where

S1 is the set of entries of S that are less than α.
S2 is the set of entries of S that equal α.
S3 is the set of entries of S that are greater than α.

RETURN(QUICKSORT(S1) · S2· QUICKSORT(S3))

This is a random algorithm, because it uses a random choice at some point,
in this case for the choice of the entry α. The choice could be randomized
by using a random number generator, but usually a rule is used in the hope
that the distribution of the input data is not significantly correlated with
the choice of rule. We’ll assume that this correlation is low enough to allow
us to treat the α’s generated by the rule to be truly random. Three popular
rules for choosing α are: always choose the first entry; always choose the
last entry; always choose the middle entry. Another popular method is to
choose the median of the first, last, and middle entries.

The run time of this algorithm on an array S of size n satisfies

T (S) = T (S1) + bn + T (S3) ,

where b accounts for the time used to place entries into the three sets and
return the answer. The worst case occurs when S1 or S3 contains n − 1
entries and

W (n) = W (n − 1) + bn ,

giving

W (n) = 1 + b

n∑
i=1

i = 1 +
b

2
n(n + 1) = Θ(n2) .

The best case for QUICKSORT occurs when S1 and S3 each contain ap-
proximately n/2 entries. Then

B(n) = 2B(n/2) + cn ,

for some constant c. This is a divide-and-conquer recurrence with a = c = 2
and m = 1, and B(n) = Θ(n log n).

So, there is a large gap between the worst case, W (n) = Θ(n2), and the
best case, B(n) = Θ(n log n). Does the algorithm on average behave closer
to worst case or closer to best case? Notice that if the average case run time

288 9. Computational Complexity

were the numerical average of worst case and best case, then the average
would be Θ(n2) and therefore close to the worst case. We show that the
opposite occurs, and find that on average, the run time of QUICKSORT is
Θ(n log n) and hence behaves close to best case. This is intuitively plausible
because nearly even splits should on average occur much more frequently
than one-sided splits.

As usual, for n ≥ 1 let A(n) be the average case run time for an array
with n entries and assume that α is equally likely to be any of the entries.
Letting A(0) = 0, for n ≥ 1,

A(n) =
1
n

n∑
j=1

[A(j − 1) + A(n − j) + b(n + 1)] ,

where b(n+1) is the time for split and combine (and is written in this form
because it slightly simplifies the computation.) Therefore,

nA(n) =
n∑

j=1

A(j − 1)+
n∑

j=1

A(n − j)+ bn(n + 1) = 2
n−1∑
j=1

A(j) + bn(n + 1) .

Using the technique of the previous example,

nA(n) − (n − 1)A(n − 1) = 2A(n − 1) + 2bn ,

giving

nA(n) = (n + 1)A(n − 1) + 2bn ;
A(n)
n + 1

=
A(n − 1)

n
+

2b

n + 1
.

Setting Z(n) = A(n)/(n + 1), this becomes

Z(n) = Z(n − 1) +
2b

n + 1
,

a first–order recurrence with forcing function ψ(j) = 2b/(j + 1), giving

Z(n) = c1 + 2b

n∑
j=1

1
j + 1

and

A(n) = c1(n + 1) + 2b(n + 1)
n∑

j=1

1
j + 1

,

for some constant c1. Using Exercise 8.39 again gives A(n) = Θ(n log(n)).
This analysis shows that the average case behavior of QUICKSORT is

close to the best case behavior, and suggests that QUICKSORT may be a

9.7 Exercises 289

good method to use to sort an array. However, remember that the analysis
assumes that each permutation of the input behavior is equally likely. If
that assumption were not true, then it isn’t clear that QUICKSORT is a
good algorithm to use. For instance, what if the data were in order except
for a few items? If you always choose the first input for α, then the splits
usually give one very large set, and it can be proved that the average run
time of QUICKSORT for this type of data has order Θ(n2).

A lesson to be learned from these two examples is that you know that
the average case is somewhere between worst case and best case, but it
can be anywhere between worst and best. Further, in many practical cases
you’ll have no idea about the distribution of the input data. The assump-
tion of a uniform probability distribution often simplifies the average case
calculation, but it is probably not applicable to a general input distribution.

9.7 Exercises

Ex 9.1. Use our perspective of moving the largest disk to derive a recur-
rence for the minimal number of moves needed to solve the n-disk Towers
of Hanoi puzzle. Solve your recurrence with appropriate initial conditions
and conclude that any algorithm that solves the n-disk Towers of Hanoi
puzzle has run time Ω(2n). (Refer to Chapter 1 for the meaning of Ω.)

Ex 9.2. Give an algorithm for the Towers of Hanoi puzzle that uses more
than the minimal number of moves. Derive and solve a recurrence for your
algorithm and show that it uses more moves than the minimum counted
in the previous exercise. (If you don’t see the usefulness of constructing
algorithms that take longer than necessary, consider the problem of The
Cab Driver and the Tourist.)

Ex 9.3. In the following algorithm, the towers are labeled 0, 1, and 2 rather
than A, B, and C. The variable COUNT contains n bits numbered from 1 to
n starting at the rightmost bit. The positions in COUNT alternate between
odd and even (in that order).

290 9. Computational Complexity

PROCEDURE TOWERS(n)
T:=0 (*Tower number computed modulo 3*)
COUNT:=0

P:=

{
+1 if n is even

−1 if n is odd

WHILE true DO
Move Disk 1 from T to T+P
T := T+P
COUNT := COUNT+1
IF COUNT = all 1’s THEN exit
IF Rightmost 0 in COUNT is in an even position

THEN move disk from T-P to T+P
ELSE move disk from T+P to T-P

COUNT := COUNT+1
ENDWHILE

(a) Without using recurrences show that this algorithm uses the minimal
number of moves.

(b) Even if incrementing COUNT and finding the rightmost 0 takes time
cn for constant c, show that the run time of this algorithm is Θ(2n).

Ex 9.4. (Refer to [19].) The following algorithm for the Towers of Hanoi
problem has the towers arranged in a circle. By considering the situation
in which the largest disk is moved, derive and solve a recurrence for the
number of moves made and a recurrence for the run time of this algorithm.

PROCEDURE
Move smallest disk one tower clockwise
WHILE a disk other than the smallest disk can be moved

DO move that disk
move the smallest disk one tower clockwise

ENDWHILE

(Notice that if the number n of disks is even, then the disks are moved one
tower counterclockwise, while if n is odd, the disks are moved one tower
clockwise.)

Ex 9.5. Which of the three algorithms for the Towers of Hanoi puzzle
is fastest? The recursive algorithm and the algorithms from the last two
exercises all have run time Θ(2n). To determine which is really fastest, we

9.7 Exercises 291

suggest programming them and running them on a real computer. (You
may want to make a small modification in the algorithm from the last
exercise, always moving the disks to the same tower regardless of the parity
of n.) Can you explain why one algorithm might be slower than the others
in a real-world programming environment?

Ex 9.6. For a given one-dimensional array A, let A[i] denote the content of
the ith entry of A. Show that the following procedure has run time Θ(n) by
deriving and solving the appropriate recurrence. Describe in English what
the algorithm accomplishes.

PROCEDURE LARGEST(n)
IF n > 1 THEN LARGEST(n− 1)

IF A[n − 1] > A[n]
THEN TEMP:= A[n]

A[n]:= A[n − 1]
A[n − 1]:= TEMP

Ex 9.7. Using the result of the last exercise, give an inductive proof that
the following algorithm sorts (A[1], A[2], . . . , A[n]). Derive and solve a re-
currence for the run time.

PROCEDURE SORT(n)
IF n > 1 THEN LARGEST(n)

SORT(n− 1)

Ex 9.8. According to an old tale told by Édouard Lucas, the monks in
a secret monastery in Hanoi are performing the moves for the Towers of
Hanoi puzzle with 64 disks. When they finish, the world will end. If it takes
them one minute to move a disk, should you worry about the end of the
world? What if they can move one disk per second? After a wily computer
salesperson convinces the monks to automate so that they can simulate
moving a disk in one nanosecond, should you worry? (Also refer to the title
story in The Nine Billion Names of God: The Best Short Stories of Arthur
C. Clarke, Harcourt, Brace & World, New York, 1967.)

Ex 9.9. Let us (mis)construe the Towers of Hanoi to mean that an order
of disks on a peg is acceptable as long as the disk on the bottom is the
largest. Give an algorithm that moves a single stack of n disks from one
peg to another in a minimum number of moves, and find a formula for that
minimum number of moves. The disks are sorted from largest on bottom

292 9. Computational Complexity

to smallest on top at the start, and are to be sorted in the same order, but
on a different peg at the end (refer to [111]).

The following secure locking system is used in the next four exercises.

The locking system assumes that n locks are connected so that

1. Lock 1 may be changed from locked to unlocked or from unlocked
to locked at any time.

2. For any j > 1, lock j may be changed from locked to unlocked (or
vice versa) only if lock j − 1 is locked and locks 1 through j − 2 are
unlocked.

Ex 9.10. One strategy for designing such a system involves thinking of
unlocking all the locks in terms of unlocking a subset of locks, unlocking
the last lock, re-locking the subset, and repeating this process until all locks
have been unlocked. This strategy naturally leads to a design in which you
have two mutually recursive procedures (or one recursive procedure with a
switch that indicates whether the procedure is locking or unlocking.)

(a) Use this strategy to design a recursive algorithm that gives the se-
quence of operations needed to unlock a series of n locks that are all
initially locked.

(b) Find a pair of recurrences that give the time and number of lock-
ing/unlocking operations used by your algorithm.

(c) Solve the recurrences in part (b).

Ex 9.11. A second strategy rests on a fairly simple observation. The locks
are in a specific configuration right after the last lock is unlocked, and to
unlock the next-to-last lock, it is necessary to re-configure the locks. You
can design a simple recursive procedure that takes the locks from the first
configuration to the second configuration. This strategy leads to a design
with two nested recursive procedures.

(a) Use this strategy to design a recursive algorithm that gives the se-
quence of operations needed to unlock a series of n locks that are all
initially locked.

(b) Find the pair of recurrences that give the run time and number of
locking/unlocking operations used by your algorithm.

(c) To solve the recurrences in part (b), observe that the first depends
on the second, but the second does not depend on the first. Thus,
you can solve the second equation and plug its solution into the first
equation and solve.

Ex 9.12. Note that the procedures in the previous two exercises use the
same amount of time and number of moves because they do the same

9.7 Exercises 293

operations in reverse order. Show that this algorithm uses the minimal
number of locking/unlocking operations.

Ex 9.13. To get a feel for the puzzle you’ve investigated in the last prob-
lems, go to your local toy store and get SPIN-OUT r©. This is a physical
embodiment of the puzzle with seven locks. Amaze your friends by solving
SPIN-OUT r© in the minimum number of moves.

Ex 9.14. Give a divide-and-conquer algorithm for finding the largest entry
in a vector with n components and show that your algorithm uses n − 1
comparisons.

Ex 9.15. Design a divide-and-conquer algorithm to find the two largest
entries in an array. Show that your algorithm is correct and calculate the
number of comparisons it uses. Give an example that shows that your
algorithm uses more comparisons than necessary.

Ex 9.16. Suppose you have a large number of coins and a two-pan balance
whose pans are as large as needed. The balance tells you whether the coins
in one pan weigh the same as the coins in the other pan or which set of
coins is heavier. Among your coins is exactly one that has a different weight
from the other coins.

(a) Assuming that the number of coins is a power of 3, design a divide-
and-conquer algorithm to find the odd coin.

(b) Prove that your algorithm is correct.
(c) Find and solve a recurrence for the number of times your algorithm

uses the balance.

Ex 9.17. Two finite strings C1 and C2 are said to commute if juxtapos-
ing in either order gives the same string (that is, C1C2 = C2C1). Give a
constructive proof that C1 and C2 commute iff there is a string w and two
natural numbers k1 and k2 such that C1 = wk1 and C2 = wk2 (where wk

denotes the juxtaposition of k copies of w.) Give a constructive proof that
such a w exists. Use your proof to construct an algorithm that finds w for
two commuting strings.

Ex 9.18. Show how a divide-and-conquer strategy with the clever identity
(9.4) can be used to construct an algorithm for multiplying large integers
in run time Θ(nlog2 3), where n is the number of bits in the larger factor.

Ex 9.19. Show that the power⎡⎣1 1 2
1 0 0
0 1 0

⎤⎦n

can be computed in O(n) bit operations. Which special properties of this
matrix allow this “fast” algorithm?

294 9. Computational Complexity

Ex 9.20. Consider a recurrence of the form T (n) = 2T (n/2)+g(n), where
g(n) is a nonnegative function. Argue that the asymptotic order of growth
of T (n) is monotonic in g(n) in the following sense: If h(n) = O(g(n)) and
S(n) = 2S(n/2) + h(n), then S(n) = O(T (n)). Then, using the technique
of letting tk = T (2k), show that T (n) = O(n log n) iff g(n) = O(n log n).

Ex 9.21. Set up and solve a recurrence for the number of real multipli-
cations the FFT algorithm uses to multiply two real polynomials with n
coefficients.

Ex 9.22. (a) The number of multiplications used by the FFT depends
on the size of the agreed upon “small-size” problem. Work out the
difference in the number of multiplications among FFTs recursing to
one component; two components; four components.

(b) Compare your answers in part (a) with the n2 multiplications used
by the standard algorithm for polynomial multiplication.

(c) Calculate the value of n0 for which the FFT is faster than the stan-
dard method for polynomials with n ≥ n0 coefficients. Do you think
that the FFT is useful in practice? If you had to multiply two poly-
nomials with 210 coefficients, which method would be faster?

(d) Assume that the time for all operations used is dominated by the
time for multiplication. What is your prediction for the ratio of the
run times of the FFT and the standard algorithm?

Ex 9.23. Do an average case analysis for the following procedure:

PROCEDURE BIGTWO(C)
FIRST:=C[1]
SEC:=C[2]
FOR I:=2 TO n DO

IF C[I]≥ SEC
THEN IF C[I] > FIRST

THEN SEC:=FIRST
FIRST:=C[I]

ELSE SEC:=C[I]

Is the average case run time for this algorithm nearer to its worst case or its
best case? Which of the two procedures LARGETWO(C) or BIGTWO(C)
would you use?

Ex 9.24. If the best case B(n) of an algorithm satisfies

B
(n

2
− γ

)
+ B

(n

2
+ γ

)
+ cn ≤ B(n) ≤ B

(n

2
− α

)
+ B

(n

2
+ α

)
+ bn

for constants α, γ, b, c, show that B(n) = Θ(n log n).

9.7 Exercises 295

Ex 9.25. Show that if the matrix C is initialized to the zero matrix, then
the following algorithm computes the n × n matrix product C = A × B.

FOR i := 1 TO n DO
FOR j := 1 TO n DO

FOR k := 1 TO n DO
cij = cij + aik ∗ bkj

Compute the run time of this algorithm. Explain why most computations
use this algorithm rather than Strassen’s algorithm from Section 9.4.2.

Ex 9.26. Show that if multiplication of two n-bit numbers can be per-
formed in time Θ(n1+ε) for some ε > 0, then division of two n-bit numbers
can also be carried out in time Θ(n1+ε). (Refer to Section 9.4.4.)

Ex 9.27. Show that multiplication of two n-bit numbers can be performed
in the same time order as division of two n-bit numbers.

Ex 9.28. Show that the square root of an n-bit number can be performed
in the same time order as multiplication of two n-bit numbers.

Ex 9.29. Compute the product of the Fourier matrices F (i) and F (−i) to
show that F (ω)−1 = F (ω). Find a simple formula for F (ω)−1, the inverse
Fourier matrix.

10
Some Nonlinear Recurrences

10.1 Some Examples

In previous chapters we have primarily discussed linear recurrences, or,
said another way, only recurrences involving linear operators on the space
of sequences. Recall that a function L on the space of sequences is a linear
operator if it satisfies the following two conditions:

1. L[x + y] = L[x] + L[y] ,

2. L[cx] = cL[x],

for all sequences x = 〈xn〉 and y = 〈yn〉 and all constants c. (Notice that
a square matrix is a linear operator on the space of vectors of appropriate
size, since a matrix satisfies these conditions when x and y are any vectors
and c is any scalar.) While the operation + above is our usual addition
of sequences, one could consider replacing + by other operations. We do
not follow this tack, but instead look at truly nonlinear equations. To keep
things simple, we consider one-dimensional equations of the form

xt+1 = f(xt).

For linear equations there is essentially only one linear one-dimensional
equation, but to paraphrase Tolstoy, equations can be linear in only one
way, but equations can be nonlinear in many different ways. So we should
not expect to have a general theory for nonlinear equations. Rather, we
hope to have different theories for different classes of nonlinear equations.

298 10. Some Nonlinear Recurrences

Let us consider the very simple nonlinear example

xt+1 =
1
xt

.

If x0 = 2, then x1 = 1/2, x2 = 2, x3 = 1/2, and the sequence oscillates
with period 2. For general non-zero x0, the sequence is x0, 1/x0, x0, 1/x0,
and the sequence generally has period 2. The only exceptions are the fixed
points x0 = ±1 and x0 = 0. (Often we extend the reals to include ∞, and
the undefined 1/0 is taken to be 1/0 = ∞ and 1/∞ = 0. Then 0 is also
a periodic point with period 2 oscillation.) Even though this equation is
nonlinear, from this analysis we can guess that in some sense it is analogous
to the linear equation

yn+1 = −yn,

which generally has period 2, and 0 is the only fixed point. We continue
this analogy with linear equations in Section 10.6.

As another simple example, consider

xn+1 =
√

xn .

For this equation to make sense, we assume that x0 ≥ 0 and that
√

x
returns the nonnegative square root of x. We can calculate some iterates,

x1 = x
1/2
0 ,

x2 = x
1/2
1 = (x1/2

0)1/2 = x
1/4
0 ,

x3 = x
1/2
2 = (x1/4

0)1/2 = x
1/8
0 ,

and see that the solution is

xn = x
1/2n

0 .

There are four cases:

1. x0 = 0, and then xn = 0 for all n ≥ 0;

2. 0 < x0 < 1, and then 1 > xn+1 > xn > 0;

3. x0 > 1, and then 1 < xn+1 < xn;

4. x0 = 1, and then xn = 1 for all n ≥ 0.

We summarize these cases by saying that 0 and 1 are fixed points of the
system, since f(p) = p for p = 0, 1. The fixed point 0 is unstable, while 1
is a stable fixed point that attracts all solutions with x0 > 0.

Our point, so far, is that some nonlinear equations are not difficult to
analyze. But there are nonlinear equations that are more difficult. Consider
the example

xn+1 = a sin(xn) ,

10.2 Nonlinear Systems 299

which can schematically be written as

xn = a sin(a sin(. . . (x0) . . .)),

a formula that gives no clear information about the behavior of the solu-
tions. Some things are easy to see. For example, if x0 is an integer multiple
of π, then x1 = 0 and xn = 0 for all n > 0. On the other hand, it is
not clear what sort of solutions arise for other values of x0. In particular,
what happens if x0 is a small positive number? Is the solution attracted
to 0? Does the solution converge to some positive value? Does the solution
become periodic? In general, these questions are difficult to answer.

10.2 Nonlinear Systems

The preceding examples suggest that nonlinear difference equations may
be difficult to analyze. In the remainder of this chapter we want to de-
scribe and give examples of some commonly used methods for analyzing
these equations. Of course, in this relatively short chapter we cannot cover
all techniques, and so we refer the interested reader to LaSalle [92], De-
vaney [51], and Parker and Chua [125], which include more information.

To keep things simple we concentrate on the one-dimensional equation

xt+1 = f(xt) ,

where f(x) is a nonlinear function and x is a real variable, which may be
restricted to the positive reals or to the extended reals or to some interval
on the real line. Such equations are sometimes called discrete dynami-
cal systems, because they are the discrete analogs of dynamical systems
occurring in physics. The function f(x) is sometimes called a map to em-
phasize that this is a discrete system. Notice that these equations have zero
input, and so the complexity comes from the nonlinear behavior of f(x)
rather than from an external source. Some complexity can come from the
choice of initial condition.

The simplest way to deal with such equations is computation. If f(x) is a
reasonable function, then one should be able to write a computer program
that, when given an initial value x0, can compute as many values of the
sequence x1, x2, . . . as one desires. There is the usual caveat that computers
do not compute with real real numbers, but instead they compute with
approximations to real numbers. So a sequence generated by a computer
may not be the sequence actually defined by the nonlinear recurrence. Of
course, for reasonable functions one hopes that the real and the computed
sequences are similar. In some cases this can be proved, but we do not
tackle this problem of approximation here.

Since humans tend to understand pictures better than sequences of num-
bers, these computer calculations are often presented as graphs. (These are

300 10. Some Nonlinear Recurrences

not the same kind of graphs we used in discussing nonnegative matrices.)
The most straightforward graph is a plot of xt as a function of the natural
number t. This is often called a time plot. Figure 10.1 shows a time plot
of the quadratic difference equation

xt+1 = xt[1 + r(1 − xt)]

with r = 2.99 and x0 = .35. To make this plot look more like a continuous
function, it is not plotted as a sequence of points, but rather each point
(t, xt) is connected by a straight line to the next point (t + 1, xt+1). The
time plot shows that the elements of the sequence are positive and don’t
get too big, but that they do jump around in an irregular manner.

FIGURE 10.1. A time plot of a chaotic trajectory (quadratic model with
r = 2.99).

Another plotting technique may be more revealing. This technique is
called a web plot, and it is somewhat similar to the phase plane plot used
in differential equations. The idea is to plot xt+1 as a function of xt. While
this does give some information, it does not show a solution sequence. To
follow a solution it is useful to have both the curve f(x) and the line y = x
plotted on the same axes. To follow a solution:

1. Start with (x0, f(x0)), which is a point on the curve.

2. Then draw a horizontal line from this point to the line y = x. The
point of intersection on the line is (f(x0), f(x0)), i.e., (x1, x1).

10.2 Nonlinear Systems 301

3. Then draw a vertical line from this point to the curve. The point of
intersection on the curve is (x1, f(x1)), i.e., (x1, x2).

4. Now simply repeat the steps going from curve to line and line to
curve for as many steps as desired.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2
x

FIGURE 10.2. A web plot showing chaos (quadratic model with r = 2.99).

Figure 10.2 shows the web plot that corresponds to the time plot shown
in Figure 10.1. This web plot may be more informative than the time plot.
For example, the parabola x[1+ r(1−x)] is outlined in the web plot, which
suggests that many or most values of x are visited on the trajectory, but
this plot also suggests that some regions are more frequently visited than
others. Further, the plot suggests that if the trajectory is periodic, then it
has a very very long period. Also, the fixed point x = 1 is visible, and the
plot suggests that this fixed point tends to repel nearby trajectories.

A full understanding of a nonlinear system might require computing so-
lutions for essentially all initial conditions. Since this is infeasible, we would
like some simple ways to summarize the possible behaviors. For arbitrary
f(x)’s this is not possible, since there are functions that are complicated
enough to simulate the behavior of Turing machines. For such functions
there can be no algorithm that determines whether a given initial condition
is eventually periodic [108], but the functions used in various applications
tend to be simple enough or have enough reasonable properties to allow
some sort of analysis. In particular, the assumption that f(x) is continuous
and sufficiently differentiable is usually enough to obtain some results.

302 10. Some Nonlinear Recurrences

We often focus on results that are invariant or asymptotic. A property
is invariant if it remains the same along a trajectory. The most common
example of this is a closed physical system in which the total energy is
always the same. Even as the system’s variables change, the total energy
remains invariant. Asymptotic properties are those that hold in the
limit as the time t increases. For example, a system might approach a
“steady state” as time increases. The behavior of a nonlinear system is
usually analyzed in terms of the system’s fixed points and cycles. The next
definitions define some of these behaviors.

As in previous chapters, the iterates of f are defined recursively by
f (0)(x) = x and f (i+1)(x) = f(f (i)(x)). A string of distinct points p1, . . . , pK

forms a cycle of length K, which we call a K-cycle if f (K)(pi) = pi

for all 1 ≤ i ≤ K. The points of a K-cycle are called periodic of pe-
riod K. A fixed point p is called attractive if there is a sufficiently
small neighborhood of p such that for all points q in this neighborhood,
limn→∞ f (n)(q) = p. Similarly, a cycle p1, . . . , pK is an attractive cycle
if there is a neighborhood of the cycle such that for all points q in this
neighborhood, limn→∞ f (nK)(q) is in the set {p1, . . . , pK}. On the other
hand, a fixed point (or cycle) is repelling if there is a neighborhood of
the point (or cycle) such that for all points q in this neighborhood, there
is an n such that f (n)(q) is outside the neighborhood.

In the following sections we look at some examples of nonlinear systems
and see how fixed points and cycles can be shown to be attractive.

10.2.1 Sarkovskii’s Theorem

Nonlinear systems may have many different co-existing cycle lengths, for
example, x0, f(x0), f (2)(x0) may all be distinct and f (3)(x0) = x0, but y0 =
f(y0), and then there would be a cycle of length 3 and a cycle of length 1.
Some common useful functions are the interval maps, which are functions
defined on a bounded interval [a, b] whose values are also in [a, b]. For the
special case of continuous one-dimensional interval maps, the question of
which size cycles can occur is answered by the following theorem. There is
no analogous result for discontinuous maps or maps in higher dimensions.
While the theorem dates from 1964, it was not known in the United States
until many years later. In fact, for example, Li and Yorke [97] proved a
special case in the 1970’s, and Cull [32] and Rosenkranz [140] also proved
special cases in the 1980’s. The proof of the theorem is beyond the scope
of this book, but it can be found in [51].

Theorem 10.2.1 (Sarkovskii’s Theorem [144]). If f(x) is a continuous
one-dimensional interval map that has a K-cycle, then f(x) also has cycles
of every length less than K, where “less” is defined by the following linear

10.3 Chaos 303

ordering:

3 > 5 > 7 > > . . .

> 2 · 3 > 2 · 5 > > . . .

> 22 · 3 > 22 · 5 > > . . .

...
...

> 2n · 3 > 2n · 5 > > . . .

...
...

> 2n > 2n−1 > > 22 > 2 > 1.

Note that there are two extreme cases: when f(x) has a 3-cycle, then it has
cycles of every length, and if f(x) has any cycles other than fixed points,
then it has a 2-cycle.

10.3 Chaos

Since the ground-breaking papers of Li and Yorke [97] and May [109, 110]
in the mid-1970’s, the importance of chaos in science has been evident. A
variety of different meanings have been attached to the word chaos. For
some, it simply means very complicated-looking behavior (refer to Fig-
ures 10.1 and 10.2), while for others, the butterfly effect is the signature
of chaos. In poetic terms, the butterfly effect means that the flapping of a
butterfly’s wings in Borneo may cause a tropical storm in the Caribbean
that devastates the sugar crop and leads to the downfall of Communism. In
the original use of Li and Yorke [97], chaos meant the co-existence of cycles
of every length. Other properties that some people like are that chaotic tra-
jectories come near to every point in the space and that there is a measure
that is invariant along trajectories. Detailed consideration of these issues
are beyond the scope of this book, but we consider some nonlinear systems
that have some of these properties

10.3.1 A simple chaotic system

Several properties of chaos are:
(a) cycles of every length;
(b) sensitive dependence on initial conditions;
(c) the existence of bounded but aperiodic orbits;
(d) for every open set A and every open set B there is an x0 ∈ A and a

K ∈ N such that f (K)(x0) ∈ B.
In this section we consider a very simple example that displays all these

chaotic properties. In order to define the system properly, we first need to

304 10. Some Nonlinear Recurrences

discuss the term equivalence mod 1. Two real numbers x and y are said
to be equivalent mod 1 if x−y is an (integer) multiple of 1; that is, x and y
differ by an integer. We symbolize this relationship by x ≡ y mod 1, but in
the following we will replace ≡ by = and write x = y mod 1 . For example,
3.14 = .14 mod 1. Equivalence mod 1 can be visualized as a clock face
with circumference 1 that has 0 in the top position, and all the numbers
between 0 and 1 are in their standard positions around the dial. Notice
that 1 does not appear, because 1 mod 1 = 0. That is, if you wrapped a
string of length 1 around the clock face, both the beginning and the end of
the string would be at 0. If your string had length 3/2, wrapping it around
the clock face puts the end at 1/2, which agrees with 3/2 mod 1 = 1/2.

Let us consider some initial conditions for the system

(10.1) xt+1 = 2xt mod 1 .

Clearly, 0 is a fixed point, and some points are attracted by 0. For example,
if x0 = 1/2, then x1 = 2(1/2) mod 1 = 0. In fact, for any integer k, 1/2k

goes through 1/2k, 1/2k−1, . . . , 1/2, 0. This is rather tame behavior. We can
also find periodic behavior. Let’s try x0 = 2/3. Then x1 = 2(2/3) mod 1 =
1/3, and x2 = 2/3, and we see that the trajectory of x0 = 2/3 is a 2-cycle.
More generally, for any k the initial condition x0 = 2k−1/(2k − 1) gives a
k-cycle, since

x1 =
2k

2k − 1
− 1 =

1
2k − 1

,

x2 =
2

2k − 1
,

...

xk =
2k−1

2k − 1
= x0 .

This behavior can be seen more readily in binary notation. For example,
multiplying x0 = 2

3 = .10101010 . . . by 2 and then reducing modulo 1
corresponds to shifting the binary point one place to the right and dropping
any bit to the left of the binary point. So 2(2

3) mod 1 is computed by
taking .10101010 . . . , shifting the binary point to get 1.0101010 . . . , and
dropping the 1 to the left of the binary point to get .0101010 . . . , which is
1
4 + 1

16 + 1
64 + · · · = 1

4 (1 + 1
4 + 1

42 + · · ·). Taking the sum of the geometric
series, we get 1

4 (1
1− 1

4
) = 1

3 . Similarly, starting with .0101010 . . . , shifting
the binary point, and dropping the leading 0, we get .10101010 . . . , which
is the number 2

3 we started with two steps ago. Here we can see that the
period 2 of the solution to the difference equation follows from the period
2 of the binary expansion of 2

3 .
Sensitive dependence on initial conditions is also easy to demon-

strate for this equation. Since 0 is a fixed point of the equation, when 0

10.3 Chaos 305

is chosen for the initial condition, the solution remains at 0 forever after.
For a very small positive initial condition x0 = ε > 0, the trajectory begins
at ε, goes to 2ε, to 4ε, and so forth. If ε is very small, then 2ε and 4ε are
also very small, and so for some number of steps the two solutions—the
one with initial condition 0 and the one with initial condition ε—are both
nearly 0, and we don’t see any divergence. But since ε is not zero, it has
at least one 1 in its binary expansion; say the first 1 appears as the kth

bit. Then after k − 1 steps the 1 will have moved to the first bit position,
which means that xk−1 ≥ 1/2, and the trajectory is now significantly far
from the zero trajectory.

Another way to describe sensitive dependence is in terms of information.
How many bits of the initial condition are needed to accurately predict xk?
For our example equation (10.1) we need about k bits to predict xk. This
means that if we could only measure the initial condition to 10 correct bits,
we would be at a loss to predict the value of the solution after 11 steps.
Sometimes this is explained as a loss of bits. If we know the initial condition
to 10 correct bits and lose a bit of accuracy at each step, then we have no
bits of accuracy left to predict the 11th value.

While our example is extreme for showing sensitive dependence, such
dependence can arise in more realistic situations. Consider predicting the
weather. One might measure a number of variables like pressure, tempera-
ture, and wind direction to 10-bit accuracy (about one part in a thousand).
Now assume that we are calculating the weather with a time step of 1/1000
of a day. To compute tomorrow’s weather we need to calculate about 1000
steps. If the weather conditions are smooth, we don’t lose many bits per
step. When we lose 1/1000 bits per step in smooth conditions, we lose about
1 bit in tomorrow’s forecast, and we expect our prediction to be accurate
to about 9 bits. On the other hand, if in turbulent conditions we lose about
1/100 bits per step, then in 1000 steps we will have lost about 10 bits, and
so there would be no bits of accuracy left to make tomorrow’s prediction.
This is not just a story, since some of the original work on chaos was an
attempt to describe why weather prediction is so difficult [100].

Returning to exhibiting sensitive dependence on initial conditions, let
us note that there was nothing really special about looking at 0. For any
two different but close initial conditions x0 and x0 + ε, the kth term of
the first sequence differs by about 1/2 from the kth term of the second for
k ≈ − log ε.

Another characteristic of chaos is the existence of bounded but ape-
riodic orbits. In our example, all orbits are bounded, since they are lim-
ited to [0, 1). Now we want to determine an initial condition x0 such that
x0, x1, x2, . . . is an aperiodic sequence. The interpretation of the equation
as a shift on binary sequences makes this easy, because all we need to do is
find an aperiodic binary sequence. For example, x0 = .10100100010000 . . .
(designed so the 1’s are isolated and the number of separating 0’s increases
by one) is aperiodic because the number of 0’s between consecutive 1’s is

306 10. Some Nonlinear Recurrences

increasing. Using x0 as the initial condition, the solution starts above 1/2,
drops to a lower value, goes above 1/2, drops to a lower value, builds up for
2 steps, goes above 1/2, drops to a lower value, builds up for a few steps,
goes above 1/2, and so forth. Why do we write this initial condition as a
binary sequence rather than as a ratio? Because no such ratio exists. That
is, the number we have written is not a rational number, because it has an
aperiodic binary expansion.

Next, for any two open sets A and B in [0, 1) we want to show that
there is an initial condition in A such that the trajectory visits B. Because
A is open, A contains an open interval of the form (a − 2−j , a + 2−j).
Let b ∈ B and we will construct an element in A’s open interval that is
eventually mapped to b. (Notice that this is an even stronger condition than
required.) Let c = .a1a2 . . . aj be the rational number formed from the first
j bits in the binary expansion of a. Let K = j + 1 and x0 = c + 2−Kb. We
see that x0 ∈ A because a − 2−j < c ≤ a, and by design, f (K)(x0) = b.

A similar construction yields a trajectory that visits every open set. (In
what follows we refer to a open interval with two rational endpoints as a
“rational interval.”) Since every open set contains a rational interval, a tra-
jectory can be shown to visit every open set by showing that it visits every
rational interval. The rational numbers are countable, which means that
they can be put into one-to-one correspondence with the natural numbers.
There are many such correspondences, and any one of them gives an order-
ing of the rationals, and so we can speak of the first rational, the second
rational, and so forth. But since we have just mapped the rationals to the
natural numbers, we can map the upper and lower endpoints for a rational
interval (and so the interval itself) to a pair of natural numbers. Hence,
the set of rational intervals can be countably ordered. Since every rational
interval contains a rational r with a terminating binary expansion, there
is a natural number j such that (r − 2−j, r + 2−j) is inside the interval. If
our trajectory visits each of these special intervals, it will visit all rational
intervals and hence all open sets.

We are now ready to pick an initial condition x0 whose trajectory visits
every open set. For the sequence 〈ri〉 of terminating rationals (ordered
according to our ordering of rational intervals) define the initial condition
x0 by the binary expansion

x0 = .r1 (j1 + 1)0’s r2 (j2 + 1)0’s r3 (j3 + 1)0’s . . .

(where (ji + 1)0’s is our abbreviation for ji + 1 consecutive 0’s.) By con-
struction, x0 lies in the first interval (r1, r1 + 2−j1); after some number of
iterations, xk lies in the second interval; and after an appropriate number
of iterations, there is an xn that lies in the interval (ri, ri + 2−ji). This
means that the trajectory starting at this x0 eventually visits every open
set. With this we see that the system given in (10.1) satisfies all four of
our given properties of chaos.

10.4 Local Stability 307

10.4 Local Stability

10.4.1 Local stability of a fixed point

For a fixed point x0 we would like to know whether nearby values of x
are attracted to it. In order to make this idea more precise, we say that a
fixed point x0 of f(x) is locally stable if for every y in every small enough
neighborhood of x0, f(y) is in the neighborhood; that is,

|f(y) − x0| ≤ |y − x0|,

and also limK→∞ f (K)(y) = x0.
Testing whether a point is locally stable may seem difficult, but when

f(x) is differentiable, there is the reasonably easy test given in the next
theorem.

Theorem 10.4.1. Let x0 be a fixed point of f(x) and assume that f(x) is
differentiable at x0. Then x0 is locally stable if |f ′(x0)| < 1, and if x0 is
locally stable, then |f ′(x0)| ≤ 1.

Proof. If f(x) is differentiable, there is a constant α such that for all y close
enough to x0,

|f(y) − f(x0)|
|y − x0|

≤ |f ′(x0)| + α|y − x0|.

If |f ′(x0)| < 1, then there is a δ > 0 such that for all y very close to x0, the
right side of this inequality is less than (1− δ). Since x0 is a fixed point of
f(x), this gives

|f(y) − x0| < (1 − δ)|y − x0| < |y − x0| ,

and f(y) is in the same neighborhood as y. Further, letting

dK = |f (K)(y) − x0| gives dK ≤ (1 − δ)dK−1 ≤ (1 − δ)Kd0 ,

and limK→∞ dK = 0. Therefore, x0 is locally stable. Conversely, if x0 is
locally stable, then for y close to x0,

|f(y) − x0| = |f(y) − f(x0)| ≤ |y − x0| ,

and since f(x) is differentiable,

|f ′(x0)| = lim
y→x0

|f(y) − f(x0)|
|y − x0|

≤ 1 .

Let’s look a bit more closely at this proof. The basic idea is that when we
are close enough to a fixed point we can approximate a nonlinear difference

308 10. Some Nonlinear Recurrences

equation by a linear difference equation. Consider the difference equation
xt+1 = f(xt) near a fixed point E. Define a new variable dK = |xK − E|
and consider the linear equation dK = (1 − δ)dK−1. We have translated
the fixed point E for x to the fixed point 0 for d. If f(x) is differentiable
with |f ′(x)| < 1, Then the linear equation gives an upper bound on
the behavior of |xK − E| in a small enough neighborhood of E, and
the convergence of the linear equation to 0 implies the convergence of the
nonlinear equation to E.

Linear approximations can also be made around non-fixed points, but we
will not get as much useful information. Near a fixed point E, f(E + ε) ≈
E + f ′(E)ε, so nearby points tend to stay nearby. For non-fixed points,
nearby points may not stay nearby. For fixed points we may be able to
repeatedly use the same linear approximation, but for non-fixed points we
will continually need new linear approximations. For numerical solutions
to equations, linear approximations are often used, but we have to face the
prospect that the linearly computed solution may be very far from the true
solution.

Notice that the statement of this theorem has a small lacuna, since it
does not say what happens when |f ′(x0)| = 1. Essentially this is because we
are making a linear approximation to f(x), and this linear approximation
dominates the nonlinear behavior locally if |f ′(x0)| < 1, but the nonlinear
terms are necessary to determine behavior when |f ′(x0)| = 1. For example,
consider

xt+1 = f(xt) = xt[1 + r(1 − xt)] ,

which has a fixed point at E = 1. The derivative is f ′(x) = 1+r−2rx, and
so |f ′(1)| ≤ 1 if 0 ≤ r ≤ 2. By the theorem, x = 1 is locally stable when
0 < r < 2. Let’s see what happens in the special cases r = 0 and r = 2,
that is, when |f ′(1)| = 1. When r = 0, f(x) = x, and if the system starts
near 1, it stays near 1 but the iterates do not converge to 1. On the other
hand, when r = 2, f(x) = 1− (x−1)−2(x−1)2, and starting at 1− ε gives
1 + ε− 2ε2, which is in the same ε neighborhood of 1. But starting at 1 + ε
gives 1 − ε − 2ε2, which is not in the same ε neighborhood of 1. In spite of
this, f(f(x)) for x near 1 is always closer to 1, and limK→∞ f (K)(x) = 1
for all x in (0, 3/2). This suggests that our definition of “local stability”
may not be ideal, and the interested reader should consult the literature
for other definitions.

10.4.2 Local stability of a cycle

Stability for a cycle is similar to stability for a point. Recall that the system

xt+1 = f(xt)

has a K-cycle x1, x2, . . . , xK if f (i)(x1) = xi+1 for all i = 1, . . . , K − 1 and
f (K)(x1) = x1. It is convenient to note that each of the points x1, x2, . . . , xK

10.4 Local Stability 309

is a fixed point of the K-fold iterate f (K)(x), and we say that x1, x2, . . . , xK

is a locally stable cycle when each of the points x1, x2, . . . , xK is a locally
stable fixed point of f (K)(x).

We would like to be able to simplify things by checking for the local
stability of only one of the points, but there is the worry that one of the
points could be locally stable, while some of the other points are not. Luck-
ily, when we assume that f(x) is differentiable, these worries vanish because
the stability condition at one point implies the stability condition at each of
the other points. The reason for this is the Chain Rule, since the derivative
is

D[f (K)(x)] = f ′(f (K−1)(x))D[f (K−1)(x)]

= f ′(f (K−1)(x))f ′(f (K−2)(x))D[f (K−2)(x)]
...

= f ′(f (K−1)(x))f ′(f (K−2)(x)) · · · f ′(x) ,

and so
D[f (K)(x)]|x=x1 = f ′(xK)f ′(xK−1) · · · f ′(x1) .

This is also the value of the derivative at every point in the cycle, because
taking another point only results in the terms in the product appearing in
a different order! Therefore, a sufficient condition for local stability of the
K-cycle x1, x2, . . . , xK is

|f ′(xK)| |f ′(xK−1)| · · · |f ′(x1)| < 1 .

As an example, let us again consider

xt+1 = f(xt) = xt[1 + r(1 − xt)] ,

this time with r slightly larger than 2. We will show that there is locally
stable 2-cycle.

The condition for a 2-cycle for this function is

f(f(x)) = x = x[1 + r(1 − x)][1 + r(1 − f(x))] .

We can eliminate the fixed point at x = 0 by dividing this equation by x.
Simplifying the resulting equation by subtracting 1 and dividing by r gives

2(1 − x) − rx(1 − x) + r(1 − x)(1 − f(x)) = 0 .

Now, the fixed point at x = 1 can be eliminated by dividing by 1− x, and
after substituting for the remaining f(x), this gives the quadratic equation

2 + r − r(2 + r)x + r2x2 = 0 ,

310 10. Some Nonlinear Recurrences

which has two distinct real roots, since r > 2. (This can be seen by calcu-
lating the discriminant of the polynomial.) We could calculate these roots,
x1 and x2, but this polynomial already tells us that

(10.2) x1x2 =
2 + r

r2
and x1 + x2 =

2 + r

r
.

Remember that the sufficient condition for local stability of the cycle is

|f ′(x1)f ′(x2)| < 1.

It is easy to compute
f ′(x) = 1 + r − 2rx

and
f ′(x1)f ′(x2) = (1 + r)2 − 2r(1 + r)(x1 + x2) + 4r2x1x2.

Using the formulas from (10.2) for x1x2 and x1 + x2 gives

f ′(x1)f ′(x2) = (1 + r)2 − 2(1 + r)(2 + r) + 4(2 + r) = 5 − r2 ,

and the local stability condition becomes

2 < r <
√

6.

Hence, the system has a locally stable 2-cycle when r satisfies this inequal-
ity.

10.4.3 Local stability in two dimensions

We can use the techniques of the previous subsections to look at the lo-
cal stability of a nonlinear system in more than one dimension. The only
modifications are that we need to generalize the idea of neighborhood and
the idea of derivative. A neighborhood in one dimension is an open interval
(x − ε, x + ε). For a neighborhood in more than one dimension we use
the higher-dimensional ball of radius ε. So an ε-neighborhood of a point
x is the set of all points y such that |x − y| < ε, where we interpret the
absolute value to mean Euclidean distance in the appropriate dimension.

A linear approximation to an n-dimensional function should consist of n
linear functions, one for each dimension. Specifically, if

F (x, y) =
(

f1(x, y)
f2(x, y)

)
is a two-dimensional function, our analog of the derivative is

J(x, y) =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
,

10.4 Local Stability 311

the Jacobian matrix, which is also important in vector calculus. The
partial derivatives inside this matrix are functions that are evaluated at
the point (x, y) at which we are making the linear approximation. For
example, if f1(x, y) = xy and f2(x, y) = x + y2, For example, if

f1(x, y) = xy

and f2(x, y) = x + y2,

then the Jacobian matrix is [
y x
1 2y

]
.

If we want a linear approximation near the point (0, 0), then the Jacobian
matrix evaluated at (0, 0) becomes[

0 0
1 0

]
,

and the linear approximation at (0, 0) is(
f1(x, y)
f2(x, y)

)
≈

(
f1(0, 0)
f2(0, 0)

)
+

[
0 0
1 0

](
x
y

)
=

(
0
x

)
.

For the linear approximation at (1, 0) we have(
f1(x, y)
f2(x, y)

)
≈

(
f1(1, 0)
f2(1, 0)

)
+

[
0 1
1 0

](
x − 1
y − 0

)
=

(
y
x

)
.

As this example shows, we still have a problem, because the derivative
in one dimension was a single number, but the Jacobian matrix is an array
of numbers. The idea in one dimension was that around a fixed point the
linear approximation can be viewed as a linear difference equation. And
the solutions of this equation converge to the fixed point if the value of the
derivative is less than 1 in absolute value, because the value of the derivative
is also the eigenvalue of the associated difference equation. Similarly, the
eigenvalues of the Jacobian matrix are the eigenvalues of a matrix linear
difference equation around a fixed point, and the solutions converge to the
fixed point if all the eigenvalues are less than one in absolute value. This
result generalizes to all dimensions, as the following theorem indicates. (For
a proof, refer to [92].)

Theorem 10.4.2. If F is an n-dimensional differentiable function with
fixed point X and J is the Jacobian matrix of F evaluated at X, then X
is a locally stable fixed point if all eigenvalues of J have absolute value less
than 1. If at least one of these absolute values is strictly greater than 1, the
fixed point is unstable.

312 10. Some Nonlinear Recurrences

As an example, consider the system

xt+1 =sin(yt) ,

yt+1 =cos(xt) ,

whose Jacobian matrix is [
0 cos(y)

− sin(x) 0

]
,

with characteristic polynomial ch(λ) = λ2 + sinx cos y and eigenvalues
±
√
− sin x cos y. Depending on the values of x and y, these roots may be

real or complex. But we know that | sinx| ≤ 1 and | cos y| ≤ 1, and so the
modulus of each of these roots is at most 1. More strongly, if (x, y) is a
fixed point, then |x| ≤ 1 and |y| ≤ 1, but then | sinx| < 1 and | cos y| ≤ 1.
So the eigenvalues are strictly less than 1 in absolute value, and all fixed
points are locally stable.

The fixed points of this system can be approximated by plotting cosx
along the x-axis and plotting sin y along the y-axis, and the intersections
are the fixed points. From this one can see that there is only one fixed
point, and its coordinates satisfy 0 < x < 1 and 0 < y < 1. This system
has one fixed point, and it is locally stable.

Another simple example of a two-dimensional system is

xt+1 = xt + xt(1 − xt − yt)/6 ,

yt+1 = yt(1 + xt − yt) .

For fixed points p = (x, y),

x = x + x(1 − x − y)/6 ,

y = y(1 + x − y) ,

and simplifying these gives

0 = x(1 − x − y) ,

0 = y(x − y) ,

which has the three solutions, p = (0, 0), (1, 0), (1/2, 1/2). The matrix of
partial derivatives for the system is

J(x, y) =
[
1 + (1 − x − y)/6 − x/6 −x/6

y 1 + x − 2y

]
.

The Jacobian matrix for the fixed point (0, 0) is[
7/6 0
0 1

]
,

10.5 Global Stability 313

which has an eigenvalue 7/6 > 1, and so (0, 0) is unstable. The Jacobian
matrix for the fixed point (1, 0) is[

5/6 −1/6
0 2

]
,

and again there is an eigenvalue (λ = 2) larger than 1, and this fixed point
is unstable. Finally, the fixed point (1/2, 1/2) has the Jacobian matrix[

11/12 −1/12
1/2 1/2

]
,

whose characteristic polynomial is ch(x) = λ2− 17
12

λ+
1
2

and its eigenvalues

are 2/3 and 3/4, and so this fixed point is locally stable. For this system,
one could make the reasonable guess that if the system were started at any
point that is not a fixed point, the trajectory eventually would approach
the fixed point (1/2, 1/2). While this guess is reasonable, one still needs
to rule out other possible behaviors. For example, there could be cycles or
aperiodic orbits that simply don’t show up in a fixed point analysis.

10.5 Global Stability

A locally stable point attracts trajectories within a small neighborhood of
the point, but one is usually interested in larger neighborhoods. At the
extreme, the neighborhood of interest could be the whole space.

We encapsulate this by saying that a fixed point p of xt+1 = f(xt) is
globally stable for f(x) on the set B if limK→∞ f (K)(b) = p holds for
each initial condition b in B.

Usually the set B is not specified, since by context one can tell that B is
the reals or the positive reals or the interval [0, 1] or some other reasonable
set. One would also like to say that a cycle or other invariant set is globally
stable, but this is difficult, since fixed points and the special trajectories
that lead to them might not converge to the cycle. People usually solve this
problem by saying that the cycle is globally stable without mentioning the
existence of the relatively few points that do not lead to the cycle.

Unlike local stability, there is no nice characterization of global stability
even if the function is differentiable. The classical technique to show global
stability is to find a “Liapunov” or “energy” function, and show that this
function is nonnegative and equal to 0 only at the fixed point, and that
the “energy” decreases along each trajectory. (See LaSalle [92] for details.)
Unfortunately finding a Liapunov function and showing that it has the re-
quired properties is a formidable task. In Section 10.6 we will see that some
simple functions can be used to prove global stability in one dimension. Of
course, in higher dimensions global stability is harder to deal with.

314 10. Some Nonlinear Recurrences

10.5.1 Staircase convergence

In Figure 10.2 we saw a rather complicated-looking web plot. But we might
hope that for some systems that display global stability, the web plot would
be much simpler. In particular, some systems have a web plot that looks
like a staircase that leads up and down to the globally stable fixed point.
We’ll first give a staircase theorem and then apply it to several examples.

Theorem 10.5.1 (Staircase Theorem). Let f(x) be a continuous func-
tion on the interval (a, b). If x < f(x) ≤ p on (a, p) and p ≤ f(x) < b
on (p, b), then limn→∞ f (n)(x0) = p for all x0 in (a, b).

A formal proof of this theorem would argue that for x0 in (a, p), f (n)(x0)
forms an increasing but bounded sequence, so this sequence has a limit,
and argue from the continuity of f that any limit must be a fixed point
of f . A similar argument for x0 in (p, b) would then show that p is the
limit for every x0. A more visual argument simply follows the web plot.
For x0 in (a, p), the “staircase” starts at (x0, x0). The first “riser” goes up
to (x0, f(x0)). The “stair” goes across to (f(x0)), f(x0)). Of course, this
last point is closer to (p, p) than (x0, x0) was. Continuing in this fashion,
that the staircase builds up toward (or hits) (p, p) is evident. Notice that
the convergence is monotone. If the sequence starts below the fixed point,
it is always increasing until it hits the fixed point, and if the sequence starts
above the fixed point, it is always decreasing until it hits the fixed point.

With this theorem’s assumptions, the difference equation

xt+1 = f(xt)

obeys limt→∞ xt = p for every choice of initial condition in (a, b). For
example, the linear difference equation

xt+1 =
1
2

xt

obeys limt→∞ xt = 0 for every choice of initial condition in (−∞,∞),
because x < 1

2 x < 0 on (−∞, 0), and 0 < 1
2 x < x on (0,∞).

For the nonlinear difference equation xt+1 = f(xt), where

f(x) =

{
x(2 − x) on (0, 1) ,

2 − 1/x on (1, 2) ,

the theorem says that limt→∞ xt = 1 for all x0 ∈ (0, 2). Notice that
while f(x) is continuous, f ′(x) is not continuous at x = 1, but neither
differentiability nor monotonicity of f(x) is required by the theorem. For

10.5 Global Stability 315

example, the nonlinear difference equation xt+1 = f(xt) with

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4x on (0, 1/4) ,

1 − (x − 1/4) on (1/4, 1/2) ,

3/4 + (x − 1/2) on (1/2, 3/4) ,

1 on (3/4, 5) ,

satisfies the theorem’s assumptions with p = 1, and limt→∞ xt = 1 for all
x0 ∈ (0, 5).

As another example, let’s consider xt+1 = e2(xt−1). we claim that there
exists a fixed point p, where 0 < p < 1 and

x < f(x) < p for x ∈ (0, p),(10.3)
p < f(x) < x for x ∈ (p, 1).

Even though we don’t know the exact value of p, we can still argue that p
exists. Let g(x) = e2(x−1) − x. Clearly, g(0) > 0 and g(1/2) < 0, so e2(x−1)

has a fixed point in (0, 1/2). Computing g′(x) = 2e2(x−1) − 1 and g′′(x) =
4e2(x−1), we find that g′(x) is an increasing function that is negative at
x = 0, and positive at x = 1. Hence g(x) has two roots, one at x = 1
and one at x = p with 0 < p < 1. Further, this argument shows that the
bounds (10.3) needed for the staircase theorem hold, and starting at any
x0 ∈ (0, 1), limt→∞ xt = p . The pleasant conclusion is that even though
we don’t know the value of p, we can use the iterates of the difference
equation xt+1 = e2(xt−1) to calculate an approximate value of p.

10.5.2 Nonmonotonic convergence

Surprisingly enough, the staircase theorem can be used to show global
stability for functions that do not satisfy its hypotheses. The “trick” is that
even if f(x) does not satisfy the hypotheses, the iterate f(f(x)) might.

Take a look at Figure 10.3, where f(x) = x e2(1−x). Clearly, f(x) does
not satisfy the hypotheses, because there is a point p0 with f(p0) = 1 and
p0 < 1, so that f(x) > 1 for all x ∈ (p0, 1). But for all x ∈ (p0, 1), f(f(x)) <
1. Now if we can show that f(f(x)) > x for these x’s, we will have half the
staircase hypothesis for f (2). We want f(f(x)) = xe2(1−x)+2(1−f) > x,
but dividing by x and taking logarithms this is equivalent to

2 − x > f,

and you can see from Figure 10.3 that this inequality holds. For the interval
(1, 2−p0), from the figure, f(x) > 2−x > p0 and f(f(x)) > f(p0) = 1. Also,
for this interval, f(f(x)) = xe2(1−x)+2(1−f) < x, because 2−x < f(x). So
the second iterate f(f(x)) satisfies the staircase hypotheses for the interval
(p0, 2 − p0), and hence limn→∞ f (2n)(x0) = 1 holds for every x0 in this

316 10. Some Nonlinear Recurrences

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

FIGURE 10.3. Showing global stability for a simple model. The curve f(x) is
bounded by the line y = 2 − x.

interval. Further, since f(x0) is also in this interval, limn→∞ f (2n+1)(x0) =
1, and limm→∞ f (m)(x0) = 1 holds for all x0 in (p0, 2 − p0).

We still have a little cleaning up to do. If x0 ∈ (0, p0), then for some
k, f (k)(x0) ∈ (p0, 1), and if x0 > 2 − p0, then f(x0) ∈ (0, 1). So for
any x0 ∈ (0,∞), some iterate falls into the interval where the staircase
theorem applies, and limn→∞ f (n)(x0) = 1 for all x0 ∈ (0,∞).

In a sense, we have just shown global stability by extending local stability
from small enough neighborhoods to larger intervals. For local stability,
we approximated a difference equation by a linear difference equation.
Said another way, we try to bound a curve locally above and below by a
straight line. If this straight line has slope at most 1 in absolute value, we
may be able to use the line to show local stability. In our global stability
example, we bounded the function f(x) above and below by the straight
line 2 − x. Since this line has slope −1, following the difference equation
xt+1 = 2 − xt for two steps brings us back to to the same point. But
following xt+1 = f(xt) for two steps will bring us nearer to the fixed
point. Since the bounding by 2 − x holds over a large interval, we can
argue that the solutions to the nonlinear difference equation will converge
to the fixed point. In our specific example, the form of f(x) made checking
the bounding easy, but the bounding was all that was needed for global
stability. We summarize this discussion with the following theorem.

Theorem 10.5.2. If x < f(x) < 2−x for x in (0, 1) and if x > f(x) >
2 − x for x > 1, then x = 1 is globally stable for (0,∞).

10.6 Linear Fractional Recurrences 317

In the next section, we consider a class of functions that generalize the
linear functions and show that global stability for the difference equation
xt+1 = f(xt) can be shown by bounding f(x) by one of the functions
from this special class.

10.6 Linear Fractional Recurrences

Among the simplest nonlinear recurrences are the linear fractional recur-
rences, which are simply the ratios of two linear recurrences. These recur-
rences are worth studying here because:

(a) they are simple;
(b) they give examples of how nonlinear recurrences can work;
(c) techniques from linear recurrences can be used;
(d) they can be used to study other nonlinear recurrences.

We write a linear fractional recurrence in the form

xt+1 =
axt + b

cxt + d
,

where we assume that a, b, c, d are real constants and that xt is a real vari-
able. Later we will consider the special case in which the constants and
initial values are rational numbers. The usual questions asked about non-
linear systems include the existence of fixed points, the existence of cycles
of various lengths, the asymptotic behavior of the system (e.g., are the fixed
points or cycles attractive in some sense?), local and global stability of fixed
points and cycles, chaos or chaotic-like behavior, and average behavior for
a distribution of initial conditions. Pleasantly enough, all these questions
can be answered in a relatively easy fashion for linear fractional systems.

First we should note that a linear fractional system degenerates into a
linear one when c = 0, since

(10.4) xt+1 =
âxt + b̂

0xt + d̂
= axt + b .

As we’ve already seen, the solution to such a linear recurrence is

xt = atx0 + b

t−1∑
i=0

ai =
{

x0 + bt if a = 1 ,

atx0 + bat−1
a−1 if a = 1 .

It is usual to analyze such a system in terms of the size of a. Generally,
when |a| > 1, the solutions increase in absolute value, while when |a| < 1,
the solutions decrease in absolute value. In fact, using the change of variable
y = x + b

a−1 , the linear system (10.4) can be rewritten as yt+1 = ayt, and
the analysis in terms of growth rate is perfectly appropriate. Of course,

318 10. Some Nonlinear Recurrences

this transformation does not make sense when a = 1, since in the original
(10.4) all solutions diverge, while in the transformed system every point is
a fixed point.

If we analyze (10.4) as a nonlinear system, we get a different picture.
First, there is a fixed point at −b/(a− 1), which is attractive when |a| < 1
for all real initial conditions. If we extend the real numbers by including
∞, the linear system always has ∞ as a fixed point, which is attractive
when |a| > 1. In summary, a linear system can be seen to have two fixed
points, one at −b/(a − 1) and the other at ∞. Which one is attractive
depends on whether |a| < 1 or |a| > 1. For the case a = 1, the two fixed
points degenerate into a single fixed point at ∞, which is an attractive
fixed point. When one of the two fixed points is attractive, the system
exponentially converges to that fixed point, but the convergence is only
linear when there is one fixed point.

Periodic behavior occurs when a = −1, since all non-fixed points have
period 2, and the 2-cycles are not attractive. They are sometimes called
neutrally stable because if the system starts at a point near a cycle, the
system always stays near the cycle but the system does not approach any
closer to the cycle. For the very special case a = 1 and b = 0, every point
becomes a neutrally stable fixed point. Finally, in the extremely singular
case a = 0, all trajectories go to b in one step, and b is called a superstable
point.

Behavior identical to the linear system (10.4) can also be found in the
nonlinear system

zt+1 =
zt

bzt + a
.

The only difference is that x has been replaced by 1/x, and so the fixed
points have been shifted from −b/(a−1) and ∞ to (a−1)/− b and 0. This
observation suggests that linear fractional systems may have many features
in common with linear ones, but that their analysis depends on functions
of several parameters and that these functions should be invariant under
such transformations as taking reciprocals of the system’s variable.

10.6.1 Asymptotic behavior

As for other nonlinear systems, the first step in analyzing linear fractional
systems is to find their fixed points and determine their stability. Because
linear fractional systems are closely related to linear systems, stability will
depend on the eigenvalues of an associated matrix. Since the fixed points
and eigenvalues may be irrational even when the linear fractional system’s
parameters are rational, we will make use of two simpler functions of the
parameters. These are the determinant, Det = ad − bc, and the dis-
criminant,, Disc = (a − d)2 + 4bc.

10.6 Linear Fractional Recurrences 319

The fixed-point equation is

p =
a p + b

c p + d
.

This is equivalent to the polynomial equation c p2 + (d − a) p − b = 0.
By the quadratic formula, the roots of this equation are

p =
1
2

[
a − d ±

√
(a − d)2 + 4bc

]
=

1
2

[
a − d ±

√
(a + d)2 − 4(ad − bc)

]
.

So, the number of fixed points will depend on the discriminant, Disc.
Let us now assume that the linear fractional system is nonlinear,

xt+1 =
axt + b

cxt + d
, where c = 0 .

When the determinant Det = ad− bc of the recurrence is zero, we can use
ad = bc to get

f(x) =
ax + b

cx + d
=

adcx + bcd

cd(cx + d)
=

bc(cx + d)
cd(cx + d)

=
b

d
.

In one iteration all trajectories go to the superstable point b/d. (The super-
stable point is a/c if d = 0.) So, the determinant tells us something about
stability.

We now know what happens when Det is zero. We still have to investigate
the behavior when Det is positive, and when Det is negative.

From the fixed point equation p = 1
2

[
a − d ±

√
(a + d)2 − 4(ad − bc)

]
,

we see that if Det is negative, then Disc is positive, and this equation will
have two real roots. On the other hand, if Det is positive, the sign of Disc
is not determined. If Disc is positive, there will be two real fixed points. If
Disc is zero, there is only one fixed point. (In essence, the two fixed points
have coalesced into one point.) If Disc is negative, there are no real fixed
points. (In this case, there are two complex fixed points, but we will not
see them because all our operations are in the reals.)

A linear fractional system can be represented in a linear fashion by[
a b
c d

](
x0

1

)
,

where x0 is the initial point and the ratio of the components of the produced
vector gives the value of x1. So, xn can be computed by performing the
linear iteration [

a b
c d

]n (
x0

1

)

320 10. Some Nonlinear Recurrences

and then taking a ratio of components to obtain xn. The eigenvalues of
the matrix are called the eigenvalues of the linear fractional system, and
they are the roots of the equation λ2 − (a + d)λ + ad− bc = 0. Notice that
the discriminant of this polynomial is (a + d)2 − 4(ad − bc), which equals
our previously defined Disc. So, if Disc is positive, the matrix will have
two distinct real eigenvalues. As above, Det < 0 implies Disc is positive,
and also implies that there is one positive and one negative eigenvalue. The
extra assumption that a+ d = 0 implies that the eigenvalues have different
absolute values. On the other hand, when a + d = 0, the two eigenvalues
will have the same absolute value: one eigenvalue will be the negative of
the other eigenvalue.

Let us assume that Disc is positive. Since the eigenvalues are distinct,
powers of the matrix can be computed by diagonalizing the matrix, and
the nth linear iteration is calculated as

(10.5)
b

λ2 − λ1

[
1 1

λ1−a
b

λ2−a
b

] [
λn

1 0
0 λn

2

] [
λ2−a

b −1
−λ1−a

b 1

](
x0

1

)
.

If we assume that |λ1| > |λ2|, then taking a ratio and a limit gives

lim
n→∞ xn =

b

λ1 − a
,

unless x0 = b/(λ2 − a). It is easy to check that these two points are in
fact the fixed points, and so the linear fractional system has one unstable
fixed point and one globally attractive fixed point when Disc > 0 and
|λ1| > |λ2|. (The given formulas are indeterminate when b = 0, but then
they can be written in the equivalent forms (λ1 − d)/c and (λ2 − d)/c.) A
special case arises when Disc > 0 and |λ1| = |λ2|, but for this to occur,
both Det < 0 and a + d = 0 are required. For this special case, a simple
calculation shows that f(f(x)) = x, which means that every point except
for the two fixed points will have period 2, and of course, neither of the
fixed points will be attractive.

A more interesting case occurs when Disc is zero, which means that
there is only one fixed point. Geometrically, this says that the line y = x is
tangent to the curve y = f(x) and the point of tangency is the fixed point.
It can be seen (see Figure 10.5) that every point above the fixed point
iterates to a point still above but nearer to the fixed point. While a point
below the fixed point first iterates away from the fixed point, eventually one
of its iterates jumps across the discontinuity and then will jump to a point
above the fixed point. As an example, consider f(x) = x/(x +1). (Refer to
Figure 10.5.) Here, xn = x0/(nx0 + 1), and every trajectory converges to
the fixed point 0. The jumping between branches is hidden by this formula,
but can be displayed by following an example. The trajectory starting at
−3/4 gives −3/4,−3, 3/2 and then converges through positive values to 0.
Notice that the convergence is different in the one and two fixed point cases.

10.6 Linear Fractional Recurrences 321

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x+
1/

x

x

FIGURE 10.4. A plot showing the linear fractional system xt+1 = (xt + 1)/xt

with two fixed points. All iterates converge to the upper fixed point.

For two fixed points, xn = p+ O(γn), where p is the stable fixed point and
|γ| < 1, while in the one fixed-point case, xn = p + O(1/n). Figure 10.4
shows the geometry of a two fixed-point case and Figure 10.5 shows the
geometry of a one fixed-point case.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

x/
x+

1

FIGURE 10.5. A plot showing the linear fractional system xt+1 = xt/(xt + 1)
with one fixed point. Convergence to the fixed point is from above.

322 10. Some Nonlinear Recurrences

So far, linear fractional systems have not behaved very differently from
linear systems. The remaining cases, in which Disc is negative (and so
4Det = (a + d)2 − Disc is positive), will display more nonlinear behavior.
We will discuss these cases in the following subsections.

10.6.2 Rational coefficients and periodicity

Like other nonlinear systems, linear fractional systems can display periodic
behavior. But unlike other systems, linear fractional systems do not allow
the co-existence of cycles of different lengths.

Theorem 10.6.1. If for a linear fractional map f there exists a point x
such that f (K)(x) = x, then either K = 1 (and x is a fixed point) or for all
y, f (K)(y) = y (all points are periodic).

Proof. As above, the linear fractional map f(x) =
ax + b

cx + d
can be considered

as a 2 × 2 matrix A =
[

a b
c d

]
acting on a vector

(
x
1

)
. Since A is a

2×2 matrix, its characteristic polynomial is quadratic, and for every natural
number K, there exist scalars αK and βK such that AK = αKA + βKI,
and

AK

(
x
1

)
= αKA

(
x
1

)
+ βK

(
x
1

)
.

So if f (K)(x) = x, then

αK(ax + b) + βKx

αK(cx + d) + βK
= x.

There are two possibilities for this equation:

(a) αK = 0, and so AK = βKI, and for every y, AK

(
y
1

)
= βK

(
y
1

)
,

which is equivalent to βKy/βK = y, so all points have period K ;
(b) αK = 0, and then ax + b = (cx + d)x, which is the equation for fixed

points.

This theorem allows for the co-existence of periodic points and fixed
points. When the linear fractional system has real eigenvalues, two real
fixed points will occur, and periodic behavior will occur when the two
eigenvalues have the same magnitude. In this case, all non-fixed points will
have period 2.

When the eigenvalues are complex, there will be no real fixed points,
and the magnitudes of the eigenvalues are forced to be equal. Here, let
eiθ = λ1/λ2. If θ is a rational multiple of π, then eiθ is a root of unity,
and there will be a least positive integer K such that AK = βKI. In this

10.6 Linear Fractional Recurrences 323

case, every point will be periodic and have period K. If θ is not a rational
multiple of π, the system will not be periodic, and all points will fail to be
periodic. We will consider this situation in more detail in the next section.

In general, all values of θ are possible, since a direct calculation of λ1/λ2

shows that any desired complex number of norm 1 can be produced by
appropriate choice of the parameters a, b, c, d for the linear fractional map.
Of course, these parameters can be chosen as real numbers, but in realistic
uses of linear fractional systems one would like to assume that the param-
eters have finite representations. In particular, one might like to assume
that these parameters are rational, and then of course the same linear frac-
tional map can be represented using integer parameters. We would like to
know which periods are possible for linear fractional systems with rational
parameters. The following theorem gives the answer.

Theorem 10.6.2. A linear fractional system with rational (or integer)
parameters can only have periods 1, 2, 3, 4, and 6, and there are examples
of rational linear fractional systems with each of these periods.

Proof. Let γ = λ1/λ2, the ratio of the eigenvalues, and γ is a root of a
polynomial γ2−eγ+1, where e is a rational function of a, b, c, d. If the linear
fractional system has period K, then γ is a primitive Kth root of unity;
that is, γK = 1 but γJ = 1 for all 0 < J < K. For each natural number K,
it can be shown [141, Section 1.2] that the cyclotomic polynomial

ΦK(x) = Π(x − ζ), where ζ ranges over all primitive Kth roots of unity ,

has integer coefficients and its degree is φ(K), where φ is Euler’s Phi Func-
tion used in Chapter 8. Further, this polynomial is minimal in the sense
that it does not have any smaller-degree rational polynomial factors.

Recalling that φ(K) counts the number of positive integers i ≤ K with
gcd(K, i) = 1, it can be shown that every integer K > 6 has φ(K) ≥ 3,
because 1 and K − 1 and a third number are relatively prime to K. We
find this third number in each of three cases. One, if K is odd and K > 5,
then 4 is also relatively prime to K. Two, if K > 6 and K = 2m with m
odd, then m − 2 is relatively prime to K because

gcd(2m, m − 2) = gcd(m − 2, 4) = 1 ,

since m− 2 is odd. (We need K > 6 because for K = 6, m− 2 = 1.) Three,
if K > 6 and K is a multiple of 4, then K/2 − 1 is relatively prime to K
because

gcd(K, K/2 − 1) = gcd(K/2 − 1, 2) = 1 ,

since K/2 − 1 is odd.
Returning to the problem at hand, γ is a root of the cyclotomic poly-

nomial ΦK(x), and γ also satisfies a rational quadratic polynomial. The
minimality of ΦK implies that φ(K) must equal 1 or 2. Hence, the only

324 10. Some Nonlinear Recurrences

possible values for K are 1, 2, 3, 4, 6, since we have ruled out all K ≥ 7, and
it’s easy to check that φ(5) = 4.

We now give an example of a rational linear fractional system for each
of these five periods.

Period 1: f(x) = x. This is a degenerate linear fractional system in which
all points have period one.

Period 2: For f(x) = (x − 2)/(2x − 1) there are complex eigenvalues and
no fixed points. An example period is 2 ←→ 0.

For f(x) = (5x−2)/(4x−5), there are real eigenvalues and two fixed
points at (5 ±

√
17)/4. All other points have period 2, for example

1 ←→ −3.

Period 3: f(x) = (x − 1)/x.
Example period is 3 −→ 2/3 −→ −1/2.

Period 4: f(x) = (x − 1)/(x + 1).
Example period is 2 −→ 1/3 −→ −1/2 −→ −3.

Period 6: f(x) = (2x − 1)/(x + 1).
Example period is 3 −→ 5/4 −→ 2/3 −→ 1/5 −→ −1/2 −→ −4.

A pleasant outcome of this analysis is that it is easy to test for periodicity
in rational linear fractional systems. One simply tries an initial condition
and checks to see whether it gives periodic behavior of length at most 6. The
only minor problem is that in the case of real eigenvalues one could chance
on a fixed point and other points would need to be tested for periodicity.

10.6.3 Chaotic-like behavior

Three characteristics of chaos are:
(a) cycles of every period;
(b) sensitive dependence on initial conditions;
(c) for every open set A and every open set B there is an x0 ∈ A and a

K ∈ N such that f (K)(x0) ∈ B.
For linear fractional systems, (a) is simply false, but we will see that (b)

and (c) do hold when the ratio of the eigenvalues is not a root of unity.
Recall that sensitive dependence means that regardless of how close two
different trajectories are when they begin, eventually they are far apart.
For linear fractional systems, the pole at p = −d/c forces trajectories to
diverge from one another. For example, if one chose to consider trajectories
starting at p−ε and p+ε, then |f(p+ε)−f(p−ε)| = 2|Det/c2ε|, a quantity
that can be made as large as one likes by taking ε small. For some linear

10.6 Linear Fractional Recurrences 325

fractional systems, this is not a problem because trajectories are attracted
to stable fixed points and any initial divergence disappears in the long term.
For periodic linear fractional systems, an initial difference is in essence
maintained and will not increase. But we will see that there are linear
fractional systems with complex eigenvalues for which the dependence on
initial conditions does not die out, since every trajectory eventually comes
close to the pole and then will be thrown far away. So two trajectories that
start close together are eventually far apart, and there is no tendency for
them to come close again. To see what happens in this case, we first show
that (c) holds. For this, a sequence 〈Sn〉 is called a source for A if for every
α ∈ A and for every ε > 0 there is a K such that |α − SK | < ε.

Lemma 10.6.3. If 〈Sn〉 is a source for A and g(x) is a function from A
onto B such that every preimage has a neighborhood of continuity, then
g(〈Sn〉) is a source for B.

Proof. If w is the desired point in B with desired closeness δ, then since
g is onto, there is a preimage v ∈ A such that g(v) = w. Since there is
a neighborhood of continuity around v, there exists an ε > 0 such that if
|x− v| < ε, then |g(x)− g(v)| = |g(x)−w| < δ. But 〈Sn〉 is a source for A,
which means that there is a K such that |SK−v| < ε and so |g(SK)−w| < δ.
This proves that g(〈Sn〉) is a source for B.

Theorem 10.6.4. If 〈xn〉 is a trajectory of a linear fractional system in
which the ratio of its eigenvalues is λ1/λ2 = eiθ, where θ is an irrational
multiple of π, then 〈xn〉 is a source for (−∞,∞).

Proof. The nth term of 〈xn〉 can be written as

xn =
−ax0 − b + x0[cos θ − sin θ cotnθ]

a − cx0 − [cos θ + sin θ cotnθ]
.

Since θ is an irrational multiple of π, the sequence 〈nθ/2π mod 1〉 is a
source for [0, 1] (refer to [120, Chapter 3]). But the transformation from
nθ to xn satisfies the hypotheses of the lemma, and so 〈xn〉 is a source for
(−∞,∞).

Hence, these linear fractional systems obey (c), and they also obey (b),
because any two nearby trajectories eventually hit a small neighborhood of
the pole and then are thrown far apart.

Figure 10.6 shows the web diagram for the linear fractional map f(x) =
(x − 5)/(x + 1). One can see that with the 100 iterates used in the dia-
gram calculation, almost all points are filled in. Figure 10.7 shows sensitive
dependence on initial conditions in that the two displayed trajectories are
often very close but are occasionally far apart.

326 10. Some Nonlinear Recurrences

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

x−
5/

x+
1

FIGURE 10.6. A web plot of the model x−5
x+1

, showing that most points are visited.

10.6.4 Invariant distributions

When a system has wandering trajectories that do not converge to cycles
or fixed points, one might ask whether perhaps other properties are con-
served. Natural questions to ask are how long a trajectory stays in a region
and how often a trajectory visits a region. It may be difficult to answer
these questions and perhaps unenlightening, because we want to know how
the system behaves rather than how a specific trajectory behaves. So, we
consider putting a probability distribution on the space and then asking
how the distribution is changed by the system. In particular, we would like
to know whether there is a very special distribution that remains the same
after the system acts on it. If we could prepare enough copies of a system
and start these copies in accord with this invariant distribution, then we
would later (even a long time later) still see the same distribution of states.
Although the copies that started in particular states are no longer in those
states, other copies are in those states in proportion to the invariant density.
We could also hope for some sort of convergence. It might be possible that
the invariant distribution would be attractive, if not for all initial distri-
butions, then at least for a class of initial distributions. By attractive here
we mean that under some reasonable definition of distance between distri-
butions, the distance between the system’s distribution at time t and the
invariant distribution converges to 0 as t increases. We will show that linear
fractional systems do have invariant distributions, but these distributions
are not attractive.

10.6 Linear Fractional Recurrences 327

0 10 20 30 40 50 60 70 80 90 100
−200

−100

0

100

200

300

400

number of iterations

tr
aj

ec
to

ry

Starting point −1.05
Starting point 0.95

FIGURE 10.7. Two trajectories for f(x) = x−5
x+1

. One trajectory starts at −1.05
and the other at −0.95. These two trajectories are often very close, but occasion-
ally they are far apart.

Although we spoke of probability distributions, it may be easier to work
with probability densities. A density function g(x) is a nonnegative func-
tion defined on the real numbers with the property that every interval (α, β)
has probability

∫ β

α
g(x)dx. We normalize g(x) to have

∫∞
−∞ g(x)dx = 1.

Now let us see how the mass on the interval (α, β) is transformed by the
mapping f . First, the interval (α, β) is transformed to (f(α), f(β)), and
then the mass that was on (α, β) is spread over this new interval. But if
g(x) is an invariant density, then the density on the new interval must
also be g(x). If we let ĝ(x) be the distribution on the new interval, we
have

∫ β

α
g(x)dx =

∫ f(β)

f(α)
ĝ(x)dx, and using x = f(y) and dx = f ′(y)dy this

becomes
∫ β

α
g(x)dx =

∫ β

α
ĝ(x)f ′(y)dy. Since α and β are arbitrary, differen-

tiating with respect to β gives g(x) = ĝ(f(x))f ′(x) at least for those x’s at
which these functions are continuous. If gI(x) is an invariant density, then
gI(x) = gI(f(x))f ′(x). Since we want gI(x) to have a finite integral over
(−∞,∞), gI(x) should be close to 0 when x is large in absolute value, and
so it may be easier to look at h(x) = 1/gI(x). Then h(x) = h(f(x))/f ′(x).
Using a linear fractional map for f , which has been normalized to have
Det = ad − bc = 1, then

h(x) = (cx + d)2h
(ax + b

cx + d

)
.

328 10. Some Nonlinear Recurrences

Assuming that h(x) has a power series, then h(x) must be a polynomial of
degree 2. The coefficients of the polynomial can be found by solving a set
of linear equations. Up to an unknown scale factor, the unique solution to
the set of three linear equations gives

h(x) = cx2 + (d − a)x − b ,

and we obtain the following theorem.

Theorem 10.6.5. If f(x) is a linear fractional map with complex eigen-
values, then there is a unique invariant density

g(x) =
γ

cx2 + (d − a)x − b
,

where γ is determined from the normalization condition
∫ ∞
−∞ g(x)dx = 1.

The complex eigenvalue condition is equivalent to g(x) having no real poles,
which in turn implies that g(x) is integrable, and the normalization makes
sense.

Conveniently enough, the integral of the density function can also be
written in closed form as∫ z

−∞
g(x)dx =

1
π

arctan
2cz + d − a√
−(d − a)2 − 4bc

+
1
2

.

If one could choose the states of an ensemble of systems to satisfy the
density gI(x), then as the states evolve under the application of f , the same
density must be maintained. One might hope that every density evolves to
gI(x) under f . The clue that this is not the case is in the theorem’s condition
that all one needs for an invariant distribution is that the eigenvalues are
complex. But for instance, any linear fractional system with eigenvalues i
and −i has period 2. For such a system, any initial distribution repeats
after two steps, and the density does not converge to the invariant density.
More specifically, one can prove the following theorem.

Theorem 10.6.6. For a linear fractional system with complex eigenval-
ues, the invariant density is not attractive even within the class of den-
sities whose reciprocals are quadratic polynomials. For such densities, the
discriminant is a conserved (invariant) quantity.

The proof of this theorem consists in showing that the coefficients of the
new density can be computed from the coefficients of the old density by
applying a matrix to the vector of coefficients. The invariant density cor-
responds to the 1-eigenvector (the eigenvector associated with the eigen-
value 1). One can then show that the other two eigenvalues of the matrix
also have absolute value equal to 1. Hence, even though a density converts
to a new density, the difference from the 1-eigenvector does not decrease,

10.6 Linear Fractional Recurrences 329

and the 1-eigenvector corresponding to the invariant density is not attrac-
tive. In fact, one can also show that the discriminant is preserved. Starting
with a density that is the reciprocal of quadratic polynomial and iterating
using f results in a density of the same kind, and the discriminant of this
density is identical to the discriminant of the starting density.

What does a typical aperiodic trajectory look like? One way to describe
such a trajectory is to use a histogram, that is, to break up the range into
small bins and then count the number of times the trajectory visits each
bin. One can then normalize by the number of iterates and hope that a
limiting histogram exists.

Let 〈f (n)(x0)〉 be the sequence of iterates of f starting at x0. If this
trajectory is well behaved, then there is an associated histogram H such
that H((a, b)) is the frequency with which the trajectory visits the interval
(a, b). Then

H((a, b)) = lim
N→∞

1
N

N∑
i=1

I(a,b)[f (i)(x0)] ,

where I(a,b)[z] is the indicator function that gives 1 when its argument is in
(a, b) and 0 when its argument is not in (a, b). Assuming that these limits
exist and that H is smooth, then

H(x) = lim
ε→0

H((x − ε, x + ε))

should exist and behave like a probability density.
Assuming that all of this is true, what should H(x) look like? Since we are

looking at limiting behavior, it should not matter whether the trajectory
starts at x0 or at f(x0). Hence, we expect the limiting histogram to be
an invariant density. But by Theorem 10.6.5 there is a unique invariant
density, so H(x) should look like gI(x). Figure 10.8 shows a histogram for
1000 iterates of (x − 5)/(x + 1). This histogram looks quite smooth and
agrees reasonably with the invariant density 1/(x2 + 5).

These results tell us that in spite of a seemingly irregular trajectory, a
fairly simple property is maintained. If one looks at any individual trajec-
tory, then the long-run histogram should look like a fairly simple function.
On the other hand, if one took multiple copies of the same linear fractional
system, assigned initial conditions with the probabilities given by the his-
togram, and then looked at the distribution of states after one or several
time intervals, the probability density would still be the same as the initial
density. This is a sort of ergodic theorem, which says that the average
over one trajectory is the same as the appropriate average over an ensemble
of systems.

Notice that if one picked a density g(x) and picked the initial conditions
for an ensemble according to g(x), one would expect a different density, say
g1(x), to occur after one time step, and then densities g2(x), g3(x), g4(x), . . .
for subsequent time steps. There is no reason to expect this sequence to

330 10. Some Nonlinear Recurrences

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

values of iterated x−5/x+1

900/(x2+5)

nu
m

be
r

of
 le

ve
ls

 o
n

th
e

tr
aj

ec
to

ry

FIGURE 10.8. A histogram for a trajectory of (x − 5)/(x + 1) showing good
agreement with the density 1/(x2 + 5).

converge to a single density. In fact, Theorem 10.6.6 says that this sequence
does not converge, but the sequence of averages does converge. That is, for
G0(x) = g(x) and GN (x) = 1

N

∑N−1
i=0 gi(x), then limN→∞ GN (x) = gI(x).

10.6.5 Proving global stability

Our initial interest in linear fractional systems came from an application
to population models. For some years, it has been known that the usual
one-dimensional population models are globally stable exactly when they
are locally stable [63, 32, 148]. We were pleased to find that the usual
population models were “enveloped” by linear fractional maps of the special
form

φ(x) =
1 − αx

α − (2α − 1)x
, where α ∈ [0, 1) .

These special linear fractional systems all have period 2, and so by a vari-
ation on Sarkovskii’s Theorem (refer to Theorem 10.2.1) we were able to
prove the following.

Theorem 10.6.7. Let φ(x) be a monotone decreasing function that is pos-
itive on (0, x−) and such that its second iterate is the identity; that is,
φ(φ(x)) = x. If f(x) is a continuous function such that

• φ(x) > f(x) on (0, 1) ,

• φ(x) < f(x) on (1, x−) ,

10.6 Linear Fractional Recurrences 331

• f(x) > x on (0, 1) ,

• f(x) < x on (1,∞) ,

• f(x) > 0 on (1, x∞) ,

then for all x ∈ (0, x∞), limk→∞ f (k)(x) = 1.

This theorem enabled us to show that local stability implies global sta-
bility for the following seven population models:

• xt+1 = xte
r(1−xt) ,

• xt+1 = xt[1 + r(1 − xt)] ,

• xt+1 = xt[1 − r lnxt] ,

• xt+1 = xt(1
b+cxt

− d) ,

• xt+1 = (1+aeb)x
1+aebx ,

• xt+1 = (1+a)bx
(1+ax)b , with a > 0, b > 0 ,

• xt+1 = rx
1+(r−1)xc .

Details of these results appear in [38, 39, 45].

10.6.6 Summary

Linear fractional systems form a fairly simple class of nonlinear systems,
yet they display many of the possible behaviors for nonlinear systems. In
particular, they have both stable and unstable fixed points and exhibit
both periodic and chaotic-like behavior. Table 10.1 gives a summary of the
possible behaviors and the corresponding conditions on the parameters.

In contrast to most nonlinear systems, linear fractional systems can be
analyzed using techniques from elementary mathematics and linear sys-
tems. Further, we have shown that linear fractional systems can be used
to analyze more complicated systems, and we suggest that linear fractional
systems should be a standard part of the toolbox for studying nonlinear
systems.

332 10. Some Nonlinear Recurrences

TABLE 10.1. The possible asymptotic behavior of a linear fractional system
f(x) = ax+b

cx+d
(we assume c �= 0 to get a nonlinear system) and set Det = ad− bc,

Disc = (a − d)2 + 4bc.

Det = 0 f(x) = b/d Superstable fixed point

Det < 0
d + a = 0

One stable fixed point
One unstable fixed point

Two real
fixed points

Convergence xn = F.P. + O(λn), |λ| < 1
d + a = 0 All points except the fixed points have period

2 neutral stability

Det > 0

Disc = 0 One globally stable fixed point
Convergence xn = F.P. + O(1

n)

Disc > 0
One stable fixed point
One unstable fixed point
Convergence xn = F.P. + O(λn), |λ| < 1

Disc < 0

Periodic, all
points have the
same period

Rational coefficients -
possible periods 1,2,3,4,6
Irrational coeffs - any pe-
riod possible

Chaotic-like

No periodic points
All open sets visited
Sensitive dependence on
initial conditions
Invariant density - Non-
attractive

10.7 Conclusion

As we said at the beginning of this chapter, nonlinear systems can be non-
linear in many different ways. We have considered some very simple types,
and our examples have usually been one-dimensional. Realistic systems of-
ten have high dimension, and the simple analyses possible in one dimension
do not apply. On the other hand, knowing that chaos is possible in one di-
mension both warns us that higher-dimensional systems may behave in
very complicated ways, and suggests that we may be able to explain this
complicated behavior by finding a chaotic one-dimensional subsystem. We
have limited our examples to the reals or rationals, but some systems may
be easier to understand if one extends the analysis to the complex num-
bers. For example, a linear fractional map may or may not have fixed points
when restricted to the real numbers, but such systems always have fixed
points in the complex numbers. Other nonlinear systems may be composed
of simple components with finite state sets like neural nets, or have an infi-
nite but locally finite state set like cellular automata, or have state sets like
the natural numbers or strings over a finite alphabet like Turing machines
and other models of computation. Analyses of such systems can be shown

10.8 Exercises 333

to be impossible [77]. Even when limited to finite state sets, the analysis of
such systems can be shown to be possible, but practically unreasonable [2].

We close with the warning that realistic systems may be highly nonlinear
and highly complicated, but also with the hope that as in the past, future
generations of scientists and engineers will find simple enough models to
solve societal problems.

10.8 Exercises

Ex 10.1. Show that if limk→∞ f (k)(x0) = p and f is a continuous function,
then p is a fixed point of f .

Ex 10.2. Let xt+1 = f(xt), where

f(x) =

⎧⎪⎨⎪⎩
x
2 + 1

4 if x < 1
2 ,

x
2 + 1

2 if 1
2 < x ≤ 1 ,

1 if x > 1 .

Show that for x0 < 1/2, limK→∞ f (K)(x0) = 1/2, but for x0 > 1/2,
limK→∞ f (K)(x0) = 1. Does this contradict the results of the previous
exercise? Can this system be enveloped by a linear fractional system? Does
this violate Theorem 10.6.7?

Ex 10.3. Show that xt+1 = sin xt has one fixed point, which is both locally
and globally stable.
Hint: A local linear approximation is insufficient. Use a local nonlinear
approximation to show local stability.

Ex 10.4. Analyze the local and global stability of x = 1 in the system

xt+1 = xt[1 + 2(1 − xt)] .

Ex 10.5. Analyze the local and global stability of x = 1 in the system

xt+1 = xt[1 + 2.00001(1− xt)].

Ex 10.6. Show that
xt+1 = xt[1 + r lnxt]

has a locally stable period 2-cycle when r is slightly larger than 2.

Ex 10.7. Let g(x) =
√
|x|. Show that Newton’s method oscillates with

period 2 for non-zero initial values.

Ex 10.8. Let xt+1 = f(xt), where

f(x) =

{
−
√

x if x ≥ 0 ,√
|x| if x < 0 .

334 10. Some Nonlinear Recurrences

Show that this system has a repelling fixed point and an attracting 2-cycle.
Is this 2-cycle globally stable?

Ex 10.9. Let xt+1 = f(xt), where

f(x) =
x2 + 2
2x − 1

.

Show that x0 = 1/2 separates the behavior of this system in the sense
that if x0 < 1/2, there is one type of behavior, and if x0 > 1/2, there is a
different behavior.

Ex 10.10. Consider the system

xt+1 = xte
r(1−xt−yt),

yt+1 = yte
r(1−xt−yt).

Find a quantity that is invariant along trajectories. Discuss the convergence
properties of this system in light of this invariant. Are there fixed points?
Are any of these fixed points locally or globally stable?

Ex 10.11. For the difference equation xt+1 = 2xt mod 1, plot xt+1 as a
function of xt. Find the fixed points in your diagram. Does the plot show
a discontinuity? Plot xt+2 as a function of xt. Can you find the oscillations
of period 2?

Ex 10.12. For xt+1 = 2xt mod 1, plot xt+3 as a function of xt. How
does this show that there are 2 distinct period 3 oscillations? Find these
oscillations.

Ex 10.13. A sequence is eventually periodic if there is an r such that
xr, xr+1, . . . is periodic of period p. Show that xt+1 = 2xt mod 1 has many
eventually periodic solutions by giving a procedure that takes r and p as
input, and outputs an initial condition that gives a solution of eventual
period p after a run-in of r steps.

Ex 10.14. Following our construction for period K, find an oscillation of
period 5 for xt+1 = 2xt mod 1. Show that this is not the only possible
construction by finding another solution of period 5 for this equation.

Ex 10.15. Show that xt+1 = 2xt mod 1 has at most �(2K − 1)/K� oscilla-
tions of period K. Can you find a better formula for the number of distinct
oscillations of period K?

Ex 10.16. Is
xt+1 = 2xt mod 1

a linear equation? Refer to the definition and notice that something is
missing. Show that by filling in the missing part of the definition in different
ways, you can declare the equation to be linear or you can show that it is
nonlinear.

10.8 Exercises 335

Ex 10.17. Consider the one-dimensional system

xt+1 = f(xt) = x[1 + r(a − x)]

for some fixed positive a, r with ar > 2. Show that the system has two fixed
points and at least one locally stable 2-cycle when ar <

√
6.

Ex 10.18. Consider the two-dimensional system

xt+1 = f1(xt, yt) = x(5 − x − y)/3 ,

yt+1 = f2(xt, yt) = y(3y − x)/3 .

Show that (2, 0) is a locally stable fixed point of the system and (3/4, 5/4)
is a fixed point that is not locally stable.

Ex 10.19. Show that the two-dimensional system

xt+1 = f1(xt, yt) = x(1 + x + y)/3 ,

yt+1 = f2(xt, yt) = y(1 − x + y)/2 ,

has four fixed points, but only one is locally stable.

Ex 10.20. Show that
xt+1 =

3xt + 2
2xt + 1

has two fixed points, λ0 > 0 and λ1 < 0, and that λ0 is locally stable
but λ1 is repelling. Further, show that the initial value x0 = 0 gives xn =
f3n/f3n−1, where fi is the ith Fibonacci number. Give a good estimate for
how close xn is to λ0. How does the recurrence behave for other initial
values?

Ex 10.21. Following the staircase method from Section 10.5.1, set up an
iteration to calculate the fixed 1/(1− 2 lnx) inside the interval (0, 1). Also,
show that your iteration converges to this fixed point.

Ex 10.22. Find the invariant density for the linear fractional f(x) =
x − 1
x + 1

. Show by example that this invariant density is not attractive. Does

the histogram for the trajectory starting at 0 look like the invariant density?

Ex 10.23. Pick an aperiodic linear fractional system with complex eigen-
values. Find the invariant density for your system. Pick an initial point
and calculate the histogram for the trajectory starting at this initial point.
Does the histogram look like the invariant density?

Ex 10.24. Show that the fixed point x = 1 is globally stable for xt+1 =
f(xt) with

f(x) =

⎧⎪⎨⎪⎩
6x 0 ≤ x < 1/2 ,

5 − 4x 1/2 ≤ x < 1 ,

1 1 ≤ x .

336 10. Some Nonlinear Recurrences

Further show that there is no linear fractional system that bounds f(x) as
required by Theorem 10.6.7.

Ex 10.25. Find a value for α such that

f(x) = x[1 + 2(1 − x)]

is bounded by a linear fractional system as in the hypotheses of Theo-
rem 10.6.7. Use this to show that x = 1 is a globally stable fixed point
for

xt+1 = x[1 + r(1 − xt)]

for all r ∈ (0, 2].

Appendix A
Worked Examples

In the first chapters of this book we consider kth–order linear recur-
rences, that is, equations of the form

(L) sn − c1sn−1 − c2sn−2 − · · · − cksn−k = ψ(n) for n ≥ k ,

where ci are complex scalars with ck = 0, and ψ is a complex-valued func-
tion. There we found a nice solution for the special case in which the forcing
function has the form

ψ(n) = λnp(n),

where λ is a fixed scalar and p is a polynomial with complex coefficients.
The initial value problems we consider in this appendix have this form. Our
principal tool is Theorem 3.3.1, which we use to find a particular solution
〈vn〉. Throughout, λ1, . . . , λt are the different eigenvalues of the recurrence.

A.1 All Simple Roots

All examples in this section are second–order linear equations whose char-
acteristic polynomial is

ch(x) = x2 − x − 6 = (x − 3)(x + 2),

which has the simple roots λ1 = 3, λ2 = −2, and the general solution
of the homogeneous system has the form sn = a13n + a2(−2)n for some
a1, a2 ∈ C, and for any ψ the equation

sn = sn−1 + 6sn−2 + ψ(n)

338 Appendix A. Worked Examples

has the general solution

sn = a13n + a2(−2)n + vn ,

for some particular solution vn. The constants a1, a2 are determined by
the initial conditions.

Theorem 3.3.1 can be used to find a particular solution to the nonhomo-
geneous equation

sn = sn−1 + 6sn−2 + λnp(n),

where p is a non-zero polynomial and λ is a scalar. For these equations the
following special case of the theorem applies.

Solving (L) when there are no multiple roots
When ch(x) has no multiple roots, then 〈sn〉 is a solution to the equation

(A.1) sn − c1sn−1 − c2sn−2 − · · · − cksn−k = λnp(n),

if and only if

(A.2) sn =
k∑

i=1

aiλ
n
i + λn nδ q(n) ,

where a1, . . . , ak ∈ C, q(x) is a polynomial with deg(q) = deg(p) and

(A.3) δ =

{
0 if λ /∈ {λ1, . . . , λt}
1 if λ ∈ {λ1, . . . , λt}

.

A particular solution is λn nδ q(n).

Let’s first analyze the homogeneous initial value problem.

Example A.1.1. For any initial value problem with equation

sn = sn−1 + 6sn−2

we have sn = a13n + a2(−2)n, and the initial conditions s0, s1 give

(A.4) s0 = a1 + a2 and s1 = 3a1 − 2a2.

Multiplying the first equation by 3 and subtracting that from the second
equation, we obtain

s1 − 3s0 = −5a2 and a2 =
3s0 − s1

5
.

A.1 All Simple Roots 339

Inserting this value for a2 into the first equation of (A.4), we have

a1 = s0 −
3s0 − s1

5
=

2s0 + s1

5
,

and the solution to the homogeneous initial value problem is

sn =
2s0 + s1

5
3n +

3s0 − s1

5
(−2)n.

Example A.1.2. Consider the second–order equation

sn = sn−1 + 6sn−2 + 2n ,

which has deg(p) = 0 and λ = 2 /∈ {3,−2}, and so deg(q) = 0 and δ =
0. The above formula gives the particular solution vn = c 2n, and the
recurrence can be used to solve for c:

vn−1 +6vn−2 +2n−vn = c2n−1 +6c2n−2+2n−c2n = 2n−1(c+3c+2−2c) .

Therefore, 2c + 2 = 0, which gives the particular solution vn = −2n, and

(A.5) sn = a13n + a2(−2)n − 2n for some a1, a2 ∈ C .

We can write this in terms of the initial values s0, s1, namely,

(A.6) s0 = a1 + a2 − 1 and s1 = 3a1 − 2a2 − 2,

which can be solved for a1, a2 as in the previous example. Multiplying the
first equation by 2 and adding it to the second, we have

2s0 + s1 = 5a1 − 4 and a1 =
2s0 + s1 + 4

5
.

Substituting this value of a1 into the first equation of (A.6), we obtain

a2 = s0 − a1 + 1 = s0 −
2s0 + s1 + 4

5
+ 1 =

3s0 − s1 + 1
5

,

and (A.5) becomes

sn =
2s0 + s1 + 4

5
3n +

3s0 − s1 + 1
5

(−2)n − 2n.

To satisfy ourselves that this has been done correctly, let us use the last
expression to verify that

s2 =
2s0 + s1 + 4

5
9 +

3s0 − s1 + 1
5

4 − 4 = s1 + 6s0 + 4 ,

which is consistent with the recurrence.

340 Appendix A. Worked Examples

Example A.1.3. For the second–order equation

(A.7) sn = sn−1 + 6sn−2 + n2n ,

let us first check that there is no constant c for which wn = c 2n is a
particular solution. We have

wn−1 + 6wn−2 + n2n − wn

= c2n−1 + 6c2n−2 + n2n − c2n

= 2n−1(c + 3c + 2n − 2c) = 2n(c + n),

which cannot be zero for all n when c is a constant. Rather, since deg(p) = 1
and λ = 2 /∈ {3,−2}, the formula says that there exists a particular solution
of the form vn = (an + b)2n for some constants a, b. The recurrence gives

vn−1 + 6vn−2 + n2n − vn

= (an − a + b)2n−1 + 6(an − 2a + b)2n−2 + n2n − (an + b)2n

= 2n−1((an − a + b) + 3(an − 2a + b) + 2n− 2(an + b))

= 2n−1((2a + 2)n + (−7a + 2b)),

which must equal zero for all n; that is, 2a + 2 = 0 and −7a + 2b = 0.
This gives a = −1, 2b = 7a = −7, and vn = −(2n + 7)2n−1 is a particular
solution of (A.7), and the general solution has the form

sn = a13n + a2(−2)n − (2n + 7)2n−1 , where a1, a2 are constants in C .

For initial values s0, s1, we obtain

s0 = a1 + a2 − 7/2 and s1 = 3a1 − 2a2 − 9 .

Simultaneously solving this system of equations yields

a1 =
2s0 + s1 + 16

5
and a2 =

6s0 − 2s1 + 3
10

,

which gives

sn =
2s0 + s1 + 16

5
3n − 6s0 − 2s1 + 3

5
(−2)n−1 − (2n + 7)2n−1 .

Verifying this calculation for n = 2 shows that

s2 =
18s0 + 9s1 + 144

5
+

12s0 − 4s1 + 6
5

− 22 = s1 + 6s0 + 8 ,

as required.

A.1 All Simple Roots 341

Example A.1.4. For
sn = sn−1 + 6sn−2 + 3n,

deg(p) = 0 and λ = λ1, which means that δ = 1, and the formula gives
vn = 3n b n for some b ∈ C. (Note that wn = c3n is a solution to the
homogeneous equation and so cannot be a particular solution here. Also,
vn = 3n(bn+a) could be used here, but the constant term can be absorbed
into the earlier coefficient of 3n.) To find b, use

vn−1 +6vn−2 +3n−vn = 3n−1b(n−1+2n−4−3n)+3n = 3n−1(−5b+3) ,

and from this, b = 3/5 and vn = n3n+1/5. Therefore,

sn = a13n + a2(−2)n +
n3n+1

5
,

and s0 = a1 + a2, s1 = 3a1 − 2a2 + 9/5 gives

a1 =
2s0 + s1 − 9/5

5
and a2 =

3s0 − s1 + 9/5
5

.

Hence,

sn =
1
5

(
(2s0 + s1 − 9/5 + 3n)3n + (3s0 − s1 + 9/5)(−2)n

)
.

Example A.1.5. For

sn = sn−1 + 6sn−2 + n(−2)n ,

deg(p) = 1 and λ = λ2, from which we obtain δ = 1 and vn = (−2)nq(n),
where q(n) = cn2 + bn for some b, c ∈ C. Then

vn−1 + 6vn−2 + n(−2)n − vn

= (−2)n−1 (q(n − 1) − 3q(n − 2) − 2n + 2q(n))

equals zero for all integers n ≥ 2. In particular, from n = 2 and n = 3 we
obtain

q(1) − 3q(0) + 2q(2) = 4,

q(2) − 3q(1) + 2q(3) = 6 ,

which give 5b+9c = 4 and 5b+19c = 6, and c = 1/5, b = 11/25. Therefore,
q(n) = 5n2+11n

25 and

sn = a13n +
(
a2 +

5n2 + 11n

25

)
(−2)n .

Substituting for n = 0 and n = 1, we have

s0 = a1 + a2 and s1 = 3a1 − 2a2 − 32/25,

and from this we obtain

a1 =
2s0 + s1 + 32/25

5
and a2 =

3s0 − s1 − 32/25
5

.

342 Appendix A. Worked Examples

A.2 One Multiple Root

Solving (L) when there is a single eigenvalue
When there is a single eigenvalue, λ1, it has multiplicity k,
and the rule for particular solutions simplifies to
vn = λnnδq(n) is a particular solution
where q is a polynomial with deg(q) = deg(p) and

(A.8) δ =

{
0 if λ = λ1

k if λ = λ1

.

If λ = λ1, the solution is

sn = λn
1 q1(n) + λn q(n)

where deg(q) = deg(p), deg(q1) ≤ k and the coefficients of q1

are determined from the initial conditions.
If λ = λ1, the solution is

sn = λn
1 q1(n) + λn nk q(n) = λn Q(n)

and deg(Q) = k + deg(p).

The five examples in this section are second–order equations, and each
has the characteristic polynomial

ch(x) = x2 − 4x + 4 = (x − 2)2 .

This has the double root λ1 = 2, which means that the general solution is

sn = (a1n + a2)2n + vn ,

where vn is a particular solution. As in the last section, vn depends on ψ,
and a1, a2 can be calculated from the initial conditions.

Example A.2.1. For any initial value problem with recurrence

sn = 4sn−1 − 4sn−2,

sn = (a1n + a2)2n, where the constants a1 = (s1 − 2s0)/2 and a2 = s0 can
be computed from the initial conditions s0, s1, and the solution is

sn = ((s1 − 2s0)n + 2s0) 2n−1 .

A.2 One Multiple Root 343

Example A.2.2. Consider the second–order equation

sn = 4sn−1 − 4sn−2 + 3n,

where deg(p) = 0 and λ = 3 is not an eigenvalue of the recurrence. From
the formula, a particular solution is vn = c3n for some constant c, and

4vn−1 − 4vn−2 + 3n − vn = 3n−2(12c − 4c + 9 − 9c) = 3n−2(9 − c),

which equals zero for c = 9. This gives vn = 3n+2 and general solution

sn = (a1n + a2)2n + 3n+2, for some a1, a2 ∈ C.

For the initial conditions s0, s1, computation gives

sn =
(s1 − 2s0 − 9

2
n + (s0 − 9)

)
2n + 3n+2.

Example A.2.3. The second–order equation

sn = 4sn−1 − 4sn−2 + 3n n

has deg(p) = 1, and λ = 3 is again not an eigenvalue. Therefore, there are
constants a, b such that vn = (an + b)3n is a particular solution. Also,

4vn−1 − 4vn−2 + n3n − vn

= 3n−2(12(an − a + b) − 4(an − 2a + b) + 9n − 9(an + b))

= 3n−2((9 − a)n − (4a + b)),

which equals zero for all integers n ≥ 2 when a = 9 and b = −4a = −36.
Therefore, vn = (9n−36)3n = (n−4)3n+2 is a particular solution, and the
general solution has the form

sn = (a1n + a2)2n + (n − 4)3n+2.

For initial values s0, s1 we obtain

sn =
(s1 − 2s0 + 9

2
n + (s0 + 36)

)
2n + (n − 4)3n+2.

Example A.2.4. The second–order equation

sn = 4sn−1 − 4sn−2 + 2n

has deg(p) = 0, and λ = 2 is an eigenvalue. Since its multiplicity is 2, δ = 2
holds in the formula, and vn = an22n is a particular solution for some
a ∈ C. Then

4vn−1 − 4vn−2 + 2n − vn

= 2n(2a(n − 1)2 − a(n − 2)2 + 1 − an2)
= 2n(−2a + 1) ,

344 Appendix A. Worked Examples

implying a = 1
2 , which means that vn = n22n−1 is a particular solution.

The general solution therefore has the form

sn = (n2 + a1n + a2)2n−1 ,

and from the initial values s0, s1 we obtain

sn = (n2 + (s1 − 1 − 2s0)n + 2s0)2n−1.

Example A.2.5. The second–order equation

sn = 4sn−1 − 4sn−2 + 2n n

has deg(p) = 1, and λ = 2 is again the double eigenvalue of the recurrence,
which means that vn = 2nq(n) is a particular solution for some q(n) =
an3 + bn2. Then

4vn−1 − 4vn−2 + n2n − vn

= 2n[2q(n − 1) − q(n − 2) + n − q(n)] ,

which must equal zero for all values of n ≥ 2. From

2q(n − 1) − q(n − 2) + n − q(n) = 0 for n = 2, 3

we obtain a = 1/6 and b = 3a = 1/2. Therefore, vn = (1
3n3 + n2)2n−1 is a

particular solution, and the general solution has the form

sn =
(n3

3
+ n2 + a1n + a2

)
2n−1 .

Initial values s0, s1 give

sn =
(n3

3
+ n2 + (s1 − 2s0 −

4
3
)n + 2s0

)
2n−1.

Since from (A.8) the solution is 2n Q(n) with Q(n) a polynomial of degree
3, the same solution could have been obtained by solving a system of four
linear equations to find the coefficients of Q(n). To obtain these coefficients
as functions of only s0 and s1, the recurrence (A.2.5) could be used twice
to give s2 and s3 in terms of s0 and s1.

A.3 One Multiple Root, Several Simple Roots 345

A.3 One Multiple Root, Several Simple Roots

Solving (L) when there is a multiple eigenvalue
When m1 ≥ 2 and m2 = · · · = mt = 1 are the respective multiplicities of
the distinct eigenvalues λ1, λ2, . . . , λt of the recurrence (L),
then vn = λnnδq(n) is a particular solution where q is a polynomial
with deg(q) = deg(p) and

(A.9) δ =

⎧⎪⎨⎪⎩
0 if λ /∈ {λ1, . . . , λt}
m1 if λ = λ1

1 if λ ∈ {λ2, . . . , λt}
.

Since each of the last five examples had only one (double) root, The last
alternative of (A.9) did not occur. The next example illustrates this case.

Example A.3.1. The second–order equation

sn = 4sn−1 − 5sn−2 + 2sn−3 + 2n

has deg(p) = 0 and λ = 2. Since the characteristic polynomial factors as

ch(x) = x3 − 4x2 + 5x − 2 = (x − 1)2(x − 2),

λ = 2 is a simple root of ch(x) and δ = 1, which gives the particular
solution vn = an2n. Then

4vn−1 − 5vn−2 + 2vn−3 + 2n − vn

= 2n−2(8a(n − 1) − 5a(n − 2) + a(n − 3) + 4 − 4an) = 2n−2(4 − a) ,

and vn = 4n2n = n2n+2 is a particular solution, and the general solution
is

sn = (a1n + a2) + a32n + n2n+2 = (a1n + a2) + (a3 + 4n)2n .

For initial values s0, s1, s2 we obtain

s0 = a2 + a3 and s1 = a1 + a2 + 2a3 + 8 ; s2 = 2a1 + a2 + 4a3 + 32 ,

which implies

sn = (−2s0+3s1−s2+8)n+(2s1−s2+16)+(s0−2s1+s2−16)2n+n2n+2 .

346 Appendix A. Worked Examples

A.4 The Input is γn
1 p1(n) + γn

2 p2(n)

For this form of input, one can find a particular solution by taking the sum
of particular solutions to two related equations. Of course, there is nothing
special about 2, so if the input is a sum of j terms, one can find a particular
solution by taking the sum of particular solutions to j related equations.
Example A.4.1. For the second–order equation

(A.10) sn = 4sn−1 − 4sn−2 + 3n n + 2n,

we break this equation into two equations, one for the input 3n n and one
the input 2n

(A.11) vn = 4vn−1 − 4vn−2 + 3n n,

(A.12) wn = wsn−1 − 4wn−2 + 2n.

From Example A.2.2, we have that

vn = (n − 4) 3n+2

is a particular solution to (A.11), and from Example A.3.1,

wn = n2 2n−1

is a particular solution to (A.12). Combining these we have that

(n − 4) 3n+2 + n2 2n−1

is a particular solution to (A.10). The general solution to (A.10) is then

sn = (α1n + α2)2n + (n − 4) 3n+2 + n2 2n−1,

where α1 and α2 depend on the initial conditions s0 and s1. Solving for α1

and α2, we find that

sn =
(
(
s1

2
− s0 + 4)n + s0 + 36

)
2n + (n − 4) 3n+2 + n2 2n−1.

Appendix B
Complex Numbers

In La Géometrie (1637) René
Descartes introduced the
terms real and imaginary
numbers. In 1936, a US
mathematician named Arnold
Dresden suggested that the
term “imaginary” be changed
to “normal,” since the imag-
inary axis is normal (that
is, perpendicular) to the real
axis. That term never caught
on, and instead has been used
for something different: a real
number is called normal if the
digits of its base b–expansion
behave in a suitably random
manner for every (positive
integer) base b.

Because the square of a real number
cannot be negative, there is no real
number whose square is −1, and this
means that the simple quadratic equa-
tion z2 + 1 = 0 has no real roots. Us-
ing notation introduced by Leonhard
Euler in 1777, we reserve i to mean a
symbol for which i2 = −1 holds, and
then define the set of complex numbers
to be

C = {a + bi : a, b ∈ R } .

There is a one-to-one correspondence
between each element a + bi in C and
the point (a, b) in the set R2. In this
bijection, real numbers a correspond
to the points of the form (a, 0), and
imaginary numbers 0+bi correspond
to the points on the y-axis. If the op-
erations of addition and scalar multiplication (using real scalars) on C are
defined “coordinatewise,” namely, by

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i

and
c(a + bi) = (a + bi)c = (ca) + (cb)i ,

348 Appendix B. Complex Numbers

the correspondence is actually a vector space isomorphism, and C is a two
dimensional real vector space under these operations. In particular, C is an
abelian group under addition. This means that the operation of addition
on the set C is a commutative, associative operation for which the real
number 0 is the additive identity and every element of C has an additive
identity.

How is multiplication of two complex numbers defined? If we want mul-
tiplication to be associative and commutative and also to distribute over
addition, then it turns out that there is only one way to define multiplica-
tion! This is because for any a, b, c, d ∈ R,

(a + bi)(c + di) = (a + bi)c + (a + bi)(di) distributive law in C

= (a + bi)c + ((a + bi)d)i associative law in C

= c(a + bi) + (d(a + bi))i commutative law in C

= (ca + cbi) + (da + dbi)i scalar multiplication in R2

= (ac + bci) + (ad + bdi)i commutative law in R

= (ac + bci) + (adi + bdi2) distributive law in C

= (ac + bci) + (−bd + adi) i satisfies the identity i2 = −1
= (ac − bd) + (ad + bc)i definition of addition in C .

This shows that because C is a real vector space, the only associative,
commutative, and distributive multiplication on C that extends the scalar
multiplication by elements of R is

(a + bi)(c + di) = (ac − bd) + (ad + bc)i .

On the surface, the multipli-
cation of two complex num-
bers a + bi, c + di seems to
require the four real multi-
plications ac, bd, ad, bc. Check
that the auxiliary multiplica-
tion (a + b)(c + d) can be used
to reduce the number of mul-
tiplications to three.

(Also note that (a + 0i)(c + 0i) = ac,
which says that this multiplication is
consistent with multiplication on the
subset R.) This definition of multipli-
cation satisfies the commutative law
for multiplication, and the real num-
ber 1 is the multiplicative identity. As
you might already know, the set C with
the operations of addition and multi-
plication defined above is the field of
complex numbers. Also, a is called the real part and b the imaginary
part of the complex number a + bi.

Until now, our geometric representation of complex numbers has been
in rectangular coordinates. Thinking in terms of polar coordinates, we can
rewrite the complex number z = a + ib as z = |z|(cos(θ) + i sin(θ)), where
|z| =

√
a2 + b2 is called its modulus, and its argument θ is the angle

between the positive x-axis and the vector a + bi. For the moment, we

Appendix B. Complex Numbers 349

write e(θ) = cos(θ) + i sin(θ), and then

z = |z|e(θ) for some 0 ≤ θ < 2π .

For instance, two values are e(π) = cos(π) = −1 and e(2π) = cos(2π) = 1.
Let’s consider the function e(θ) from another point of view. From calculus

you know that the functions cos(θ) and sin(θ) are functions of the real
variable θ whose power series are

cos(θ) =
∑
k≥0

(−1)k

(2k)!
θ2k and sin(θ) =

∑
k≥0

(−1)k

(2k + 1)!
θ2k+1 ,

which converge at every real number θ. Therefore, for any real number y
the complex number e(y) = cos(y) + i sin(y) equals

e(y) =
∑
k≥0

1
(2k)!

(iy)2k +
∑
k≥0

1
(2k + 1)!

(iy)2k+1 ,

since (−1)k = i2k. If we can add these two series, then

(B.1) e(y) =
∑
k≥0

(iy)k

k!
,

which is reminiscent of the power series expansion of ex =
∑

k≥0 xk/k!. In
fact we will show that these series can be added and it then makes sense
to define the complex exponential function ez of the complex variable
z = x + iy as

(B.2) ez = ex(cos(y) + i sin(y)) .

Once this is done, we can drop the notation e(θ) and write z = |z|eiθ, where
θ is the argument of z.

We’ve gotten ahead of ourselves here, because we haven’t yet defined
what we mean by convergence of power series with complex coefficients. As
with the reals, for any sequence 〈ai〉 of complex numbers and any complex
number α the power series

∑
k≥0 ak(z − α)k is said to converge at the

complex number z = z0 if the sequence of partial sums
∑N

k=0 ak(z0 − α)k

converges, where complex modulus is used for the absolute value. We will
show that every power series has a radius of convergence R (it might be
infinite), which has the property that the series

∑
k≥0 |ak(z − α)k| con-

verges for all |z − α| < R and diverges for all |z − α| > R. Because
ex =

∑
k≥0 xk/k! converges for all real numbers, this complex power series

cannot have a finite radius of convergence. This means that ez is absolutely
convergent for all complex numbers z and so can be rearranged, and ez as
defined in (B.2) is a well-defined function on C.

350 Appendix B. Complex Numbers

Remember that we want to prove that each power series
∑

k≥0 ak(z − α)k

has a radius of convergence. We give a proof of this fact by showing that
the supremum of the set

S = {r ≥ 0 : there exists M > 0 such that|ak|rk ≤ M for every k}

is the radius of convergence. To do this we show that for R = sup(S)
the series

∑
k≥0 |ak(z − α)k| converges for all |z − α| < R and the series∑

k≥0 ak(z − α)k diverges for all |z − α| > R. If the complex number z

satisfies |z − α| = r > R, then r is not in S, which means that |ak||z − α|k
is unbounded and the series must diverge. On the other hand, for r =
|z − α| < R we can choose ρ such that r < ρ < R. Then ρ is an element of
S, and there exists M > 0 such that |akρk| < M for every k. This gives

|ak(z − α)k| = |ak|rk = |ak|ρk
(r

ρ

)k

< M
(r

ρ

)k

,

where the ratio of the bounding geometric series
∑

k≥0(r/ρ)k satisfies
0 ≤ r/ρ < 1. Therefore, by comparison, the series

∑
k≥0 ak(z − α)k is ab-

solutely convergent on |z − α| < R, and R = sup(S) is the radius of
convergence of the power series.

Any power series
∑

k≥0 ak(z − α)k whose radius of convergence R is
positive can be shown to be a differentiable function on its disk of con-
vergence. Also, its derivative is the power series γ =

∑
k≥0 kak(z − α)k−1,

and γ has the same radius of convergence as the original series. To see this,
let R1 be the radius of convergence of the series γ, and R1 ≤ R follows
from |kak| ≥ |ak|. To show that R1 ≥ R, we’ll prove that R1 ≥ r for all
0 < r < R. The construction of R implies that for any ρ with r < ρ < R
there exists M > 0 such that |ak|ρk ≤ M for all k, and

|kak|rk−1 =
|akρk|

r
· k

(r

ρ

)k

≤ M

r
· k

(r

ρ

)k

.

Since 0 ≤ r < ρ, then limk �→∞ k(r/ρ)k = 0 and, |kak|rk−1 is bounded,
giving R1 ≥ r for all 0 < r < R. From this we see that R1 ≥ R, as
required.

To summarize, if we let f(z) =
∑

k≥0 ak(z − α)k for any power series∑
k≥0 ak(z − α)k then, f(z) is a differentiable complex-valued function on

its disk of convergence. Further, its derivative is f ′(z) =
∑

k≥0 D(ak(z − α)k),
where D is the differentiation operator on the space of polynomials. Re-
peating this argument, f ′(z) must also be differentiable on the same disk,
and f ′′(z) =

∑
k≥0 D2(ak(z − α)k). From this we see that f(z) is infinitely

differentiable on its disk of convergence.
Before leaving power series, we define the Taylor series of f about z = α

as ∑
k≥0

Dk(f)(α)
k!

(z − α)k,

Appendix B. Complex Numbers 351

where Dk(f)(α) is the kth derivative of f(z) evaluated at z = α. It can be
proved that the Taylor series of f converges to f(z) on some disk about α,
provided

∑
n≥0 an(z − α)n has a non-zero radius of convergence.

Returning to the complex exponential function, from the formulas for
the sum of two angles we have

ei(θ1+θ2) = [cos(θ1) cos(θ2)−sin(θ1) sin(θ2)]+i[sin(θ1) cos(θ2)+sin(θ2) cos(θ1)] .

The definition of multiplication allows us to unwrap this identity to get

ei(θ1+θ2) = eiθ1eiθ2 ,

and iteration of this process for any positive integer m gives

eimθ = eiθ+i(m−1)θ = eiθei(m−1)θ = · · · = (eiθ)m .

This proves the laws of exponents

ez1+z2 = ez1ez2 and emz = (ez)m .

When θ0 = 2π/m, this formula becomes eiθ0m = ei2π = 1, which means
that z = eiθ0 is a root of the equation zm − 1 = 0, which is called the
principal mth root of unity. (The complex numbers satisfying zm−1 = 0
are called the mth roots of unity.) Writing the equation zm−1 = 0 in the
form zm = 1, we see that every power of the principal mth root of unity is
also an mth root of unity, and since eiθ = ei(θ+2π) always holds, this gives
m different roots eiθ, where

θ = 0 ,
2π

m
,

4π

m
, . . . ,

(m − 1)π
m

.

Since these roots are complex numbers that are equally separated on the
unit circle |z| = 1, they are often called cyclotomic (or “circle dividing”).
Because a polynomial equation of degree m has at most m roots in any
field (refer to Exercise 8.23), these are all the roots of zm − 1 = 0 in
C. Geometrically, they form the vertices of a regular m-gon inscribed in
the complex unit circle with one vertex anchored at 1. Algebraically, they
form a group Gm under multiplication, and this group is isomorphic to the
integers modulo m under the map

eik2π/m �→ k mod m .

352 Appendix B. Complex Numbers

The complex exponential func-
tion gives one of the most re-
markable formulas in all of
mathematics:

eπ i = −1.

This formula, sometimes called
Euler’s formula, relates four
of the fundamental mathemat-
ical constants, namely: e, the
base of the natural logarithms;
π the ratio of the circumfer-
ence of a circle to its diameter;
i the complex unit; and −1 the
basic negative number.

Among these roots are the primitive
mth roots of unity, the ones that are
not roots of zk − 1 = 0 for any 0 <
k < m. (The principal root of unity
is an example of a primitive root of
unity.) Every primitive root of unity
generates the group Gm, in the sense
that the powers

ζ, ζ2, . . . , ζm

of any primitive root ζ are all differ-
ent, and so every mth root of unity
can be written as a power of ζ. For
instance, every fifth root of unity ex-
cept 1 is primitive, whereas there are
only two primitive sixth roots of unity,
the principal root ei2π/6 and its multi-
plicative inverse e−i2π/6. The roots of unity occur naturally in many con-
texts throughout this book.

The fact that every polynomial of the form f(z) = zm − 1 has m com-
plex roots is not an anomaly, since every polynomial of degree m has m
complex roots (where here roots are counted according to their multiplic-
ity). This statement is usually referred to as the Fundamental Theorem
of Algebra and is an example of a statement that is very easy to state
but quite difficult to prove. Although a version of this result was conjec-
tured sometime in the sixteenth century, Newton was probably the first
to state the Fundamental Theorem in fairly modern terms when he wrote
that every non-constant polynomial with real coefficients can be factored
into a product of linear and quadratic polynomials with real coefficients.
The theorem was finally proved by Gauss in his 1799 dissertation, and over
his lifetime Gauss published at least three other proofs of the Fundamen-
tal Theorem. Each proof is an existence proof, since it proves only that
such roots exist and doesn’t give a method for explicitly constructing any
of the roots. The roots of most polynomials are difficult or impossible to
determine explicitly, but we’ve ignored this important practical problem
by choosing polynomials with relatively obvious factorizations.

Appendix C
Highlights of Linear Algebra

This appendix contains a review of the linear algebra we use in this book.
It is essentially a synopsis of an introductory linear algebra course with a
number of topics omitted and some new ones added.

C.1 Vector Spaces and Subspaces

Every pair of elements in a vector space V can be added together, and also
each element can be multiplied by scalars. For us, the scalars are either real
or complex numbers, and V is called a real vector space or a complex vector
space according to whether R or C is used. (In general, the set of scalars
must be a field as defined in Section 8.2.) In order for V to be a vector
space, the operations of addition and scalar multiplication must satisfy
a list of axioms requiring that both operations are associative, addition
is commutative, and scalar multiplication distributes over addition. Also,
there must be an additive identity and every element of V must have an
additive inverse in V . The basic examples of vector spaces are Rn and Cn

(with scalars from R and C respectively).
A nonempty subset W of V is called a subspace if W is also a vector

space under the operations of V . Given a set S of vectors, we can form
linear combinations of elements v1, . . . , vn from S, sums of the form

α1v1 + · · · + αnvn, where the αi are scalars.

Every subspace is closed under formation of linear combinations, and it can
be proved that any nonempty subset of a vector space that is closed under

354 Appendix C. Highlights of Linear Algebra

addition and scaling is a subspace. The subspace of all linear combinations
of elements from S is called the span of S, which we will denote by Span(S);
it is the smallest subspace containing S. A set S is called a spanning
set for V when Span(S) = V , which means that every element of V can
be written as a linear combination of elements from S.

Although we will principally concentrate on subspaces of Rn and Cn,
there is a more general class of vector spaces that we encounter, the vec-
tor spaces of real-valued or complex-valued functions defined on some set
X . Because a sequence is a function defined on the natural numbers, the
complex vector space of all sequences of complex numbers is an example
of such a vector space. Both addition and scalar multiplication are defined
“componentwise”. In other words, to add two sequences we add the nth

term of the first sequence to the nth term of the second, and multiplying
every element of a sequence by the scalar α gives the scaled sequence. Con-
sidering an infinite sequence 〈sn〉 as the function s(n) = sn defined on N,
these componentwise vector space operations are the usual operations for
functions,

(s + t)(n) = s(n) + t(n) and (αs)(n) = αs(n) .

As we said above, in general, the set of all functions from any set X into R

or C forms a vector space under the usual operations of function addition
and scaling. When X = Z we obtain the set of all doubly infinite sequences
of real or complex numbers.

C.2 Linear Independence and Basis

How many different linear combinations yield the same vector? A nonempty
set S of vectors is called linearly independent if every element in Span(S)
can be expressed as a linear combination of elements of S in only one way.
Since Span(S) is a subspace of V , it contains the zero vector, and so linear
independence means that whenever

α1v1 + · · · + αnvn = 0 = β1v1 + · · · + βmvm

holds we have αi = βi for all i. Since the choice of all βi = 0 gives the zero
vector, linear independence means that

α1v1 + · · · + αnvn = 0 ⇐⇒ αi = 0 for all i.

The last condition is often taken as the definition of linear independence.
A nonempty subset B ⊆ V is called a basis for V if it is a linearly

independent spanning set for V . In other words, B is a basis exactly when
every vector can be expressed as a linear combination of elements from B
in a unique way. When V has a basis with n elements, we can encode every

C.3 Linear Transformations 355

element of V as an n-tuple. For instance, it can be checked that the set
B = {(1, 2), (−1, 1)} is a basis for V = R2. Because the vector v = (−2, 3)
satisfies

v =
1
3
(1, 2) +

7
3
(−1, 1),

its encoding in terms of the basis B is

vB =
(

1/3
7/3

)
.

In general, when B = {v1, . . . , vn} is a basis for V and v = α1v1+· · ·+αnvn,
we write the coordinate vector of v relative to B as vB = (α1, . . . , αn)T .

The dimension of a vector space is defined to be the number of elements
in a basis. This definition makes sense because any two bases for the same
vector space must have the same number of elements. The proof of this
fact can be broken into two cases, whether or not the vector space has
a finite spanning set. In the first case the vector space is called finite-
dimensional. The proof for this case proceeds by proving that if V has
a spanning set with n elements, then any subset that has more than n
elements must be linearly dependent. From this we know that any basis
can have at most n elements. If B and B′ are two bases for V , then B is a
spanning set, and the linear independence of B′ implies that the number of
elements in B′ is bounded above by the number of elements in B. Reversing
the roles of B and B′ yields the desired result, namely, that B and B′ have
the same size. If there is no finite spanning set for V , the vector space V
is called infinite-dimensional. The above argument is too simplistic for
this case, but there is a more sophisticated argument that works. We don’t
give that argument here.

When V is a finite-dimensional vector space, any subspace W is also
finite-dimensional, and the dimension of any proper subspace W = V is
strictly less than the dimension of V .

C.3 Linear Transformations

A linear transformation is a map between two vector spaces (they must have
the same field of scalars) that preserves addition and scalar multiplication.
In other words, a function T : V → W is a linear transformation if

T (αv + v′) = αT (v) + T (v′) for all v, v′ ∈ V and all scalars α.

Because of linearity, a linear transformation is defined by its action on a
basis.

Linear transformations that are functions from a vector space to itself are
called operators. We can represent a linear operator on an n-dimensional
vector space V with respect to a basis B = {b1, . . . , bn} by the n × n

356 Appendix C. Highlights of Linear Algebra

matrix whose ith column is T (bi) as represented in the basis B. We denote
this matrix by [T]B. For example, if T is the operator on R3 defined by
T (x, y, z) = (3x + 2y, z,−z) and B = {(1, 0, 0), (1,−1, 0), (0, 0, 1)}, then
T (b1) = (3, 0, 0) = 3b1 ; T (b2) = (1, 0, 0) = b1; T (b3) = (0, 1,−1) =
b1 − b2 − b3, and

[T]B =

⎡⎣ 3 1 1
0 0 −1
0 0 −1

⎤⎦ .

Notice that we are assuming an inherent order to the elements in the basis,
and the term ordered basis is normally used to emphasize this. For A =
[T]B we have the helpful identity

T (v)B = AvB for all v ∈ V,

and T is an invertible operator iff A is an invertible matrix.1 From this
it follows that if we are given two pieces of data, an ordered basis B for
an n-dimensional vector space and a linear operator T , then from this
information we can obtain an n × n matrix A with the property that a
coordinate vector for T (v) relative to B is the result of multiplying A by the
coordinate vector for v relative to B. If C = {c1, . . . , cn} is another ordered
basis for V , consider the matrix P whose ith column is ci represented in
the basis B. This matrix P is often called the change of basis matrix
from C to B. Since the associated linear operator (the identity operator) is
invertible, the matrix P is invertible and

T (v)C = P−1APvC ,

and the representation of T in the basis C is the matrix P−1AP . Two
matrices A and B, that are related by a matrix equation of the form

B = P−1AP

are called similar matrices, and they represent the same linear operator
with respect to two different bases.

C.4 Eigenvectors

A non-zero vector v ∈ V is called an eigenvector of the linear operator
T if T (v) = λv, and the scalar λ is called the associated eigenvalue. Sets
of eigenvectors corresponding to different eigenvalues are linearly indepen-
dent.

When V is finite-dimensional and A = [T]B, the matrix of T relative to
any convenient basis B, then any eigenvector v with associated eigenvalue

1In this book, “iff” is shorthand for “if and only if”.

C.4 Eigenvectors 357

λ satisfies (A−λI)vB = 0. Since v is non-zero (and so vB is non-zero), this
implies that (A − λI) is a singular matrix and det(A − λI) is zero. From
this we see that the eigenvalues of T (which are also called the eigenvalues
of the matrix A) are the roots of the polynomial chA(x) = det(A−xI), the
characteristic polynomial of A. Finding the roots of any polynomial is a
difficult problem, but our examples have been constructed so that roots of
the characteristic polynomials are relatively easy to find. Then finding the
eigenvectors associated with an eigenvalue λ amounts to using Gaussian
elimination to solve the homogeneous system of equations (A − λI)v = 0.

When the vector space has a (finite) basis B1 of eigenvectors, the matrix
representing T in the basis B1 is a diagonal matrix (and the diagonal ele-
ments are the respective eigenvalues). If A is again the matrix of T relative
to any basis B and P is the change of basis matrix from B1 to B then
P−1AP is a diagonal matrix and A is called diagonalizable. We summa-
rize this very nice situation in the following theorem whose proof can be
found in [78, Chapter 6].

Theorem C.4.1. Let A be an n × n matrix with complex entries and
characteristic polynomial chA(x) = det(A − Ix). Let λ1, λ2, . . . , λn be
the eigenvalues of A, the complex roots of chA(x) = 0 repeated according to
multiplicity. Then:
(a) The matrix A is diagonalizable iff V has a basis of eigenvectors.
(b) If all the λi are distinct then A is diagonalizable.
(c) Suppose A is diagonalizable and {v1, . . . , vn} is a basis of eigenvec-

tors. If P is the n× n matrix whose ith column is vi then P−1AP is
the diagonal matrix D with diagonal entries λ1, . . . , λn.

(d) Real symmetric matrices are always diagonalizable.

For us the most useful application of diagonalizability is that it al-
lows the powers of A to be computed quickly, since P−1AP = D yields
An = PDnP−1 for all n ≥ 0.

Not all square matrices are diagonalizable, but every square matrix A
with complex entries has a Jordan form. This means that there exists an
invertible matrix P with the property that P−1AP is composed of Jordan
blocks on the diagonal, where a Jordan block is a bidiagonal matrix of the
form ⎡⎢⎢⎢⎢⎢⎣

λi 1 0 . . . 0
0 λi 1 0 . . . 0

.
0 0 1
0 0 0 0 . . . λi

⎤⎥⎥⎥⎥⎥⎦ for some λi.

358 Appendix C. Highlights of Linear Algebra ⎡⎢⎢⎢⎣
3 1
0 3

0 0
0 0

0 0
0 0

3 0
0 2

⎤⎥⎥⎥⎦
For example, the matrix on the right is in Jordan
form. It has three Jordan blocks: one of size 2 with
λ1 = 3, one of size 1 with λ2 = 3, and one of size
1 with λ3 = 2. The Jordan form of A is unique up
to the order of the individual Jordan blocks, the
λ’s appearing in the blocks of the Jordan form are
the eigenvalues of A, and the minimal and characteristic polynomials of A
can be found from J . The proofs of all these facts and more information on
Jordan form can be found in [78, Section 7.3]. Since An = PJnP−1, powers
of A are relatively easy to compute because the nth power of a Jordan block
is
(C.1)⎡⎢⎢⎢⎢⎢⎣

λ 1 0 . . . 0
0 λ 1 0 . . . 0

. . .
. . .

0 0 1
0 0 0 0 . . . λ

⎤⎥⎥⎥⎥⎥⎦
n

=

⎡⎢⎢⎢⎢⎢⎢⎣

λn nλn−1 · · ·
(
n
l

)
λn−l

0 λn · · ·
(

n
l−1

)
λn−l+1

.
...

0 0
. . .

...
0 0 · · · λn

⎤⎥⎥⎥⎥⎥⎥⎦

C.5 Characteristic and Minimal Polynomials

Recall that the characteristic polynomial of an n × n matrix A is defined
as chA(x) = det(A − Ix). For instance, the characteristic polynomial of

A =
[

0 −1
1 0

]
is chA(x) = x2 + 1, and we note that

chA(A) = A2 + I =
[

−1 0
0 −1

]
+

[
1 0
0 1

]
=

[
0 0
0 0

]
.

This property holds in general.
Before stating the theorem, let us make sure that the computation makes

sense. Addition of matrices, like addition of vectors is componentwise, that
is, if A, B, and C are n × n matrices and C = A + B, the the (i, j)th

entry in C is the sum of the (i, j)th entry from A and he (i, j)th entry
from B. Scalar multiplication is also componentwise. So if c is a complex
number and A is an n×n matrix, then c A is an n×n matrix whose (i, j)th

entry is c times the (i, j)th entry of A. The product of two n × n matrices
is the n × n matrix which represents the linear transformation obtained
by applying one matrix and then the other. Specifically, if C = A ∗ B,
then ci,j =

∑n
k=1 ai,k bk,j . In the special case when we are computing

powers of A, order doesn’t matter. Because taking powers, multiplying
by a constant (scalar), and addition, all make sense for n × n matrices,
evaluating a polynomial at a matrix makes sense.

C.6 Exercises 359

Theorem C.5.1 (The Cayley–Hamilton Theorem). For any n × n
complex matrix A, let chA(x) be A’s characteristic polynomial, then

chA(A) = 0,

that is, evaluating A’s characteristic polynomial at A results in the n × n
matrix which has every entry equal to zero.

There is another important polynomial associated with a square matrix
A. From the Cayley–Hamilton Theorem we know that chA(x) is a non-
zero polynomial p(x) for which p(A) is the zero matrix. The minimal
polynomial minA(x) of A is defined to be the non-zero polynomial of least
degree (with leading coefficient equal to 1) such that p(A) = 0. Dividing
chA(x) by minA(x) gives polynomials q(x), r(x) such that

chA(x) = q(x) minA(x) + r(x) where deg(r(x)) < deg(minA(x)) .

Since chA(A) = 0 = minA(A), then also r(A) = 0 and the minimality of
deg(minA) forces the remainder r(x) to be the zero polynomial. This proves
the useful fact that the minimal polynomial always divides the character-
istic polynomial.

C.6 Exercises

Ex C.1. Use induction to verify formula (C.1) for the powers of Jordan
blocks.

Ex C.2. Show that a companion matrix is diagonalizable if and only if it
has distinct eigenvalues.

Ex C.3. Prove that the Jordan form of a companion matrix A contains
exactly one Jordan block for each eigenvalue of A.

Ex C.4. If A is the companion matrix of a polynomial f(x) ∈ C[x] show
that f(x) is the characteristic polynomial of A.

Ex C.5. Suppose A is an k×k real matrix with k distinct real eigenvalues.
Then there is a complex matrix P such that P−1AP is diagonal. Can you
always find a real matrix P with this property?

Ex C.6. Consider computing the characteristic polynomial of a k × k
matrix A. Then A − Ix is a matrix whose off-diagonal entries are complex
constants, and each diagonal matrix is a monic linear polynomial.
(a) Let M be a k × k matrix which has k − m rows in which every entry
is a constant and in the remaining m rows all but one entry is a constant
and that entry is a monic linear polynomial. If no column contains two
polynomial entries, show that det(M) is a polynomial of degree m.
(b) Construct an inductive argument to show the degree of the character-
istic polynomial of a k × k matrix A is always k.

Appendix D
Roots in the Unit Circle

Our analysis of difference equations shows that the general solution of a
recurrence converges to zero when all roots of the characteristic polynomial
are less than 1 in absolute value. Since some roots of the characteristic
polynomial might be nonreal, this condition means that all roots lie within
the unit circle in the complex plane. In what follows we describe a method
of Morris Marden [105, Chapter X] for calculating the number of roots of
a polynomial within the unit circle. Here we specialize his technique to
polynomials with real coefficients and recast it as an algorithm.

Before we discuss the general method, we would like to consider the
special example of nonnegative polynomials, which is the leading case for
applications. Recall that a nonnegative polynomial is a polynomial p of
the form

p(x) = xk − c1x
k−1 − c2x

k−2 − · · · − ck−1x − ck ,

where all ci ≥ 0 and ck > 0. In Section 5.1 we prove some special properties
of nonnegative polynomials. Among these, Theorem 5.1.3 says that any
nonnegative polynomial has exactly one positive real root λ0, which is
dominant in the sense that any other root λ satisfies |λ| ≤ |λ0|. Further,
from Corollary 5.1.5, when p is primitive (that is, when gcd{i | ci >
0} = 1), λ0 is strictly dominant, the only root whose modulus has the
maximum value. This result can be applied to construct polynomials whose
roots lie inside the unit circle. For instance, if q(x) is a real polynomial for
which

p(x) = (x − 1)q(x) = xk − c1x
k−1 − c2x

k−2 − · · · − ck−1x − ck

362 Appendix D. Roots in the Unit Circle

is nonnegative, then λ0 = 1 must be the dominant root of p. When p
is a primitive polynomial, then λ0 = 1 is a strictly dominant root of p,
and all roots of q therefore lie inside the unit circle. As an example, for
q(x) = x2 + 1

2x + 1
2 , p(x) = (x − 1)q(x) = x3 − 1

2x2 − 1
2 is a primitive

nonnegative polynomial. Therefore, all roots of q lie inside the unit circle,
and the general solution of the associated recurrence sn = 1

2sn−1 + 1
2sn−3

converges to zero. Of course, in this simple example it’s easy to check that
q has two complex roots and that the absolute value of each is 1/

√
2.

A more complicated example is the generalized Fibonacci polyno-
mial , p(x) = xk − xk−1 − · · ·− x− 1 for integer k ≥ 2. The dominant root
λ0 lies in the open interval (1, 2) because p(1) ≤ −1 < 0 < p(2). Dividing
p(x) by (x − λ0) gives the polynomial

q(x) = xk−1 + (λ0 − 1)xk−2 + · · · + (λk−1
0 − · · · − 1) .

Setting

P (x) = (x − 1)q(x) = xk + (λ0 − 2)xk−1 + (λ2
0 − 2λ0)xk−2

+ · · · + (λk−1
0 − 2λk−2

0)x − (λk−1
0 − · · · − 1) ,

from p(λ0) = 0 we obtain λ0(λk−1
0 − λk−2

0 − · · · − 1) = 1, and so the
constant term in P is −λ−1

0 , which is negative. Since 1 < λ0 < 2, the other
coefficients are also negative, and we see that P is a primitive nonnegative
polynomial, which implies that all roots of q must lie inside the unit circle.
Since p(x) = (x−λ0)q(x), from this we obtain that all roots of p except λ0

are within the unit circle.

D.1 Marden’s Method

We now turn to Marden’s method as applied to any polynomial f with real
coefficients. The basic idea involves a kind of pairing between

f(x) = a0 + a1x + · · · + anxn and its

reciprocal polynomial fR(x) = a0x
n + a1x

n−1 + · · · + an ,

The relationship between f and fR is such that for every non-zero root r
of f inside the unit circle there’s a corresponding root r−1 of fR(x) outside
the unit circle, and conversely. This is true because

f(x) = a · xk
n−k∏
i=1

(x − ri) implies fR(x) = A ·
n−k∏
i=1

(x − 1
ri

) ,

where A = a ·
∏n−k

i=1 ri.

D.1 Marden’s Method 363

For any f , Marden constructs the associated polynomial

G(x) =a0f(x) − anfR(x)

=a0(a0 + a1x + · · · + anxn) − an(a0x
n + a1x

n−1 + · · · + an),

whose degree is at most n− 1 and whose constant term is a2
0 − a2

n. He then
streamlines some results of A. Cohn [27] to obtain his Lemma 42.1, which
we reword as the following theorem.

Theorem D.1.1. Suppose f(x) = a0 + a1x+ · · ·+ anxn has p roots inside
the unit circle. If δ(f) := a2

0−a2
n is non-zero then G(x) = a0f(x)−anfR(x)

has either p or n−p roots inside the unit circle, and the sign of its constant
term δ(f) determines which holds. Namely, G has p roots inside the unit
circle iff δ(f) > 0. Further, f and G have the same number of roots on the
unit circle.

Therefore, the number of roots of the constructed polynomial G that lie
inside the unit circle is the same as the number of roots of either f or fR

within the unit circle, and the sign of δ(f) indicates which holds. For our
current purposes we’ll say that G is equivalent to f when G and f have
the same number of roots within the unit circle. (Otherwise, G is equivalent
to fR.)

For example, let f(x) = x2 − 1
3x − 1

3 . Then f has two roots inside the
unit circle, and its reciprocal polynomial fR(x) = 1 − 1

3x − 1
3x2 has no

roots inside the unit circle. The constructed polynomial is

G(x) = a0f(x) − a2f
R(x)

= −1
3

(
x2 − 1

3
x − 1

3

)
− 1

(
−1

3
x2 − 1

3
x + 1

)
=

4
9
x − 8

9
,

and δ(f) = − 8
9 < 0, which means that G is equivalent to fR. Since the only

root of G is x = 2, which lies outside the unit circle, G is indeed equivalent
to fR. Neatly enough, since δ(G) = 0, in order to determine whether G has
a root inside the unit circle we could have applied the same calculation to
G. For this, we calculate GR(x) = 4

9 − 8
9x and construct

−8
9
G(x) − 4

9
GR(x) =

(
8
9

)2

−
(

4
9

)2

= 3
(

4
9

)2

,

a constant polynomial that has δ(G) > 0 and so is equivalent to G. There-
fore, G (and also fR) has no roots inside the unit circle.

The iteration used in this last example is the basis for Marden’s algorithm
for counting the number of roots inside the unit circle. At the start of
the procedure we set f0 = f , which may have up to deg(f) = n roots

364 Appendix D. Roots in the Unit Circle

within the unit circle. The degree of the constructed polynomial f1(x) =
a0f0(x) − anfR

0 (x) is at most n − 1. Provided δ(f1) = 0, we can continue
to use f1 to construct f2, and so forth.

Notice how this technique can be used to count the number of roots.
When the procedure starts we have f(x), which may have up to n roots
within the unit circle. The constructed polynomial a0f −anfR has at most
n−1 roots. If the constructed polynomial f1 has the same number of roots
as fR within the unit circle, then fR can have at most n − 1 roots within
the circle, and hence must have at least one root outside the circle. But this
root of fR that is outside the circle must correspond to a root of f that is
inside the circle. So, when f1 is equivalent to fR, we can increase the count
of f ’s roots inside the circle by 1. On the other hand, if f1 agrees with f ,
we know that f has at most n− 1 roots within the unit circle, and we can
proceed with counting the roots of f1 to get the count of the number of
roots of f . One does not change the count in this situation.

As mentioned earlier, the sign of the constant term of f1 indicates whether
it is equivalent to f or equivalent to fR. So the algorithm will have a switch,
called DELTA in the version below, to keep track of whether the current
polynomial is equivalent to f or fR. This switch will be updated when
a new polynomial is constructed and will also tell the algorithm when to
increment the count.

The algorithm breaks down when some δ(fi) is zero. In this situation
we want to obtain an equivalent polynomial EQUIV(fi) [105, Section 45].
Suppose we encounter

g(x) := fi(x) = a0 + a1x + · · · + amxm with δ(g) = a2
0 − a2

m = 0 .

Then am/a0 = ±1 which we call u. Construction of the equivalent polyno-
mial EQUIV(g) depends on whether or not (am, · · · , a0) = (ua0, · · · , uam).

Case 1. If (am, · · · , a0) = (ua0, · · · , uam), replace g with

EQUIV(g) = a1x
m−1 + 2a2x

m−2 + · · · + (m − 1)am−1x + m am ,

the reciprocal polynomial of the derivative of g.

Case 2. If (am, · · · , a0) = (ua0, · · · , uam), let 0 < q < m be the smallest
subscript such that uaq = am−q. Set b = (am−q − uaq)/am and

G(x) = (xq + 2b/|b|)g(x) =
m+q∑
i=0

Bix
i

with
EQUIV(g) = B0G(x) − Bm+qG

R(x) ,

a polynomial whose degree can be shown to be at most deg(g).

D.1 Marden’s Method 365

Marden’s Algorithm
INPUT: f(z) = a0 + a1z + · · · + anzn,

a polynomial with real coefficients.
OUTPUT: COUNT, the number of roots of f

within the unit circle.

FOR s = 0 TO n

a
(0)
s = as

ENDFOR
DELTA = 1; COUNT = 0

FOR j = 0 TO n − 1
IF |a(j)

0 | = |a(j)
n−j |

THEN EQUIV(a
(j)
0 + · · · + a

(j)
n−jx

n−j)
and update j if necessary.

FOR k = 0 TO n − j − 1
a
(j+1)
k = a

(j)
0 a

(j)
k − a

(j)
n−ja

(j)
n−j−k

ENDFOR

DELTA = DELTA ∗ sgn(a(j+1)
0)

IF DELTA < 0 THEN COUNT = COUNT+ 1
ENDFOR

OUTPUT(COUNT)

As written, the algorithm uses O(n2) time, and it uses O(n2) space for
storing a two-dimensional array to hold the various a’s. By slightly chang-
ing the order in which the a’s are calculated and writing over the old a’s
with the new a’s, the space usage can be cut to O(n). The O(n2) run time
assumes that products and differences can be computed in constant time.
This may not be true. If one uses “real” computer arithmetic, then there
may be catastrophic loss of accuracy, and extended precision may be neces-
sary. Conversely, if rational or even integer arithmetic is used, the number
of digits needed could double at each iteration, again forcing the use of
extended precision.

Example D.1.1. Use Marden’s algorithm to count the number of roots of
f(x) = −7x3 + x2 + 5x + 1 inside the unit circle.
n = 3 DELTA = 1; COUNT = 0

366 Appendix D. Roots in the Unit Circle

j = 0

k = 0 a
(1)
0 = a

(0)
0 a

(0)
0 − a

(0)
3 a

(0)
3 = 1 · 1 − (−7) · (−7) = −48

k = 1 a
(1)
1 = a

(0)
0 a

(0)
1 − a

(0)
3 a

(0)
2 = 1 · 5 − (−7) · 1 = 12

k = 2 a
(1)
2 = a

(0)
0 a

(0)
2 − a

(0)
3 a

(0)
1 = 1 · 1 − (−7) · 5 = 36

DELTA = 1 · (−1) = −1
COUNT = 0 + 1 = 1

j = 1

k = 0 a
(2)
0 = a

(1)
0 a

(1)
0 − a

(1)
2 a

(1)
2 = (−48) · (−48) − (36) · (36) = 1008

k = 1 a
(2)
1 = a

(1)
0 a

(1)
1 − a

(1)
2 a

(1)
1 = −48 · 12 − 36 · 12 = −1008

DELTA = −1 · (1) = −1
COUNT = 1 + 1 = 2

j = 2
At this point, |a(2)

0 | = |a(2)
1 |, and EQUIV(f2) must be invoked. Continuing

with our algorithm, Case 1 applies and gives EQUIV(1008 − 1008x) =
−1008. Updating to j = 3, the FOR loop terminates, and the algorithm
outputs COUNT = 2 as the number of roots of −7x3 + x2 + 5x + 1 inside
the unit circle. Notice that the root x = 1 is not inside the unit circle and
is not counted.

Example D.1.2. Find the number of roots of f(x) = x2 + x + 1 that lie
inside the unit circle.
n = 2 DELTA = 1; COUNT = 0
j = 0

Since a
(0)
0 = a

(0)
2 , EQUIV(f) must be found. Case 1 again applies

and

EQUIV(x2 + x + 1) = a1x + 2a2 = x + 2 .

Since the degree of this polynomial is deg(f) − 1, j must be in-
creased by 1 and a

(1)
0 = 2, a

(1)
1 = 1.

j = 1
k = 0 a

(2)
0 = a

(1)
0 a

(1)
0 − a

(1)
1 a

(1)
1 = 4 − 1 = 3 > 0 .

DELTA remains positive and COUNT is not incremented. The FOR loop
terminates, and 0 is returned as the number of roots inside the unit circle
for the polynomial x2 + x + 1. This is correct, because the two roots of
this polynomial are the primitive third roots of unity, which lie on the unit
circle.

D.2 Exercises 367

Example D.1.3. We consider f(x) = x2 − x − 1, the characteristic polyno-
mial for the Fibonacci sequence. As we’ve noted many times, f has one root
inside the unit circle and one root outside the unit circle. Applying Mar-
den’s algorithm, we obtain a

(0)
0 = −1 and a

(0)
2 = 1, giving u = a2/a0 = −1.

But (a0, a1, a2) = (−1,−1,−1) = −(a2, a1, a0), and Case 2 with q = 1
applies. Then b = −2,

G(x) = (xq − 2)g(x) = (x − 2)(x2 − x − 1) = x3 − 3x2 + x + 2 ,

and

EQUIV (g) = 2G(x) − GR(x) = −7x2 + 5x + 3 .

Since deg(EQUIV) = deg(f), j = 0 is unchanged.

j = 0

k = 0 a
(1)
0 = a

(0)
0 a

(0)
0 − a

(0)
2 a

(0)
2 = 9 − 49 = −40 < 0

k = 1 a
(1)
1 = a

(0)
0 a

(0)
1 − a

(0)
2 a

(0)
1 = 15 − (−35) = 50

DELTA = 1 · (−1) = −1
COUNT = 0 + 1 = 1

j = 1

k = 0 a
(2)
0 = a

(1)
0 a

(1)
0 − a

(1)
1 a

(1)
1 = (−40)(−40)− (50)(50) < 0

DELTA = −1 · (−1) = 1
COUNT = 1.

The FOR loop terminates and the algorithm correctly outputs COUNT = 1
for the number of roots of x2 − x − 1 inside the unit circle.

Example D.1.4. As a final example we consider f(x) = x2−1, which has the
roots ±1. Applying Marden’s algorithm, we obtain δ(f) = 0, which means
that EQUIV(f) must be invoked. Since (a2, a1, a0) = −(a0, a1, a2), Case 1
of the replacement algorithm applies, and EQUIV(f) = a1x + 2a2 = −2.
This results in a decrement of the degree by 2, and j must be incremented by
2. But then the FOR loop terminates, and the algorithm correctly outputs
COUNT = 0.

D.2 Exercises

Ex D.1. Use Marden’s algorithm to show that 5xn − 1 has n roots inside
the unit circle.

368 Appendix D. Roots in the Unit Circle

Ex D.2. Show that xn−1 +2xn−2 +3xn−3 + · · ·+(n−1)x+n has no roots
inside the unit circle by applying Marden’s algorithm to xn + xn−1 + · · ·+
x + 1.

Ex D.3. Use Marden’s algorithm twice to determine the number of roots
inside the unit circle and the number of roots inside the circle of radius 2
for the polynomial 2x3 − 3x2 + 2x + 2. (The actual roots are − 1

2 , 1 + i,
1 − i.)

References

[1] F. Acton. Numerical Methods That (Usually) Work. Harper and
Row, New York, NY, 1970.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Anal-
ysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[3] W. R. Alford, A. Granville, and C. Pomerance. There are infinitely
many Carmichael numbers. Annals of Mathematics (2), 139:705–722,
1994.

[4] R. Askey and M. Ismail. Recurrence Relations, Continued Fractions,
and Orthogonal Polynomials. American Mathematical Society, Prov-
idence, RI, 1984.

[5] W. W. Rouse Ball and H. M. S. Coxeter. Mathematical Recreations
and Essays. Dover Publications, New York, NY, 1987.

[6] È. G. Belaga. Some problems involved in the calculation of polyno-
mials. Dokl. Akad. Nauk. SSSR, 123:775–777, 1958.

[7] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Math-
ematical Sciences. SIAM, Philadelphia, PA, 1994.

[8] H. Bernardelli. Population waves. J. Burma Res. Soc., 31:3–18, 1941.

[9] W. Beyer, R. Roof, and D. Williamson. The lattice structure of
multiplicative congruential pseudo-random vectors. Mathematics of
Computation, 25:345–363, 1971.

370 References

[10] B. Bollobás. Random Graphs. Academic Press, London, 1985.

[11] B. Boncompagni. Scritti di Leonardo Pisano: mathematico del secolo
decimoterzo. Rome, Italy, 1857–1862.

[12] C. B. Boyer. A History of Mathematics. Wiley, New York, NY, 1989.

[13] R. Brent and J. Pollard. Factorization of the eighth Fermat number.
Math. Comp., 36:627–630, 1981.

[14] E. F. Brickell. A fast modular multiplication algorithm with ap-
plications to two-key cryptography. In Advances in Cryptology—
Proceedings of CRYPTO ’82, pages 51–60. Plenum, 1983.

[15] Brother Alfred Brousseau. The relation of the zeros to periods in
the Fibonacci sequence modulo a prime. American Mathematical
Monthly, 71:897–899, 1964.

[16] Brother Alfred Brousseau. Introduction to Fibonacci Discovery. Fi-
bonacci Association, San Jose, CA, 1965.

[17] Brother Alfred Brousseau. Fibonacci and Related Number Theoretic
Tables. Fibonacci Association, San Jose, CA, 1972.

[18] W. G. Brown. Historical note on a recurrent combinatorial problem.
American Mathematical Monthly, 72:973–977, 1965.

[19] P. Buneman and L. Levy. The Towers of Hanoi problem. Information
Processing Letters, 10:243–244, 1980.

[20] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole,
Pacific Grove, CA, 2001.

[21] R. M. Capocelli, editor. Sequences. Springer-Verlag, New York, NY,
1990.

[22] R. M. Capocelli, G. Cerbone, P. Cull, and J. Holloway. Fibonacci
facts and formulas. In Sequences, pages 123–137. Springer-Verlag,
New York, NY, 1990.

[23] R. M. Capocelli and P. Cull. Rounding the solutions of Fibonacci-like
difference equations. Fibonacci Quarterly, 41:133–141, 2003.

[24] R. D. Carmichael. On composite numbers P which satisfy the Fermat
congruence aP−1 ≡ 1 (mod P). Amer. Math. Monthly, 19:22–27,
1912.

[25] H. Caswell. Matrix Population Models. Sinauer Associates, Sunder-
land, Mass, 2001.

References 371

[26] E. Catalan. Note sur une équation aux différence finies. J. Math.
Pures Appl., 3:508–516, 1838.

[27] A. Cohn. Über die Anzahl der Wurzeln einer algebraischen Gleichung
in einem Kreise. Mathematische Zeitscrift, 14:110–148, 1922.

[28] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progression. Journal of Symbolic Computation, 9:251–280,
1990.

[29] T. Cormen, A. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms (second edition). McGraw-Hill, Boston, MA, 2001.

[30] R. Crandall and C. Pomerance. Prime Numbers: A computational
approach. Springer-Verlag, New York, NY, 2001.

[31] P. Cull. The problem of time unit in Leslie’s population model. Bul-
letin of Mathematical Biology, 42:719–728, 1980.

[32] P. Cull. Global stability of population models. Bulletin of Mathe-
matical Biology, 43:47–58, 1981.

[33] P. Cull. Local and global stability for population models. Biological
Cybernetics, 54:141–149, 1986.

[34] P. Cull. Local and global stability of discrete one-dimensional popula-
tion models. In L. M. Ricciardi, editor, Biomathematics and Related
Computational Problems, pages 271–278. Kluwer, Dordrecht, 1988.

[35] P. Cull. Stability of discrete one-dimensional population models.
Bulletin of Mathematical Biology, 50(1):67–75, 1988.

[36] P. Cull. Analysis of algorithms. In L. M. Ricciardi, editor, Lectures in
Applied Mathematics and Informatics, pages 1–61. Manchester Uni-
versity Press, 1990.

[37] P. Cull. Linear fractionals — simple models with chaotic-like be-
havior. In D. M. Dubois, editor, Computing Anticipatory Systems:
CASYS 2001 , pages 170–181. Conference Proceedings 627, American
Institute of Physics, Woodbury, N.Y., 2002.

[38] P. Cull and J. Chaffee. Stability in discrete population models. In
D. M. Dubois, editor, Computing Anticipatory Systems: CASYS’99,
pages 263–275. Conference Proceedings 517, American Institute of
Physics, Woodbury, NY, 2000.

[39] P. Cull and J. Chaffee. Stability in simple population models. In
Cybernetics and Systems 2000, pages 289–294. Austrian Society for
Cybernetics Studies, 2000.

372 References

[40] P. Cull and J. Holloway. Computing Fibonacci numbers quickly.
Information Processing Letters, 32:143–149, 1989.

[41] P. Cull and E. F. Ecklund Jr. Towers of Hanoi and analysis of algo-
rithms. American Mathematical Monthly, 92(6):407–420, June–July
1985.

[42] P. Cull and A. Vogt. Mathematical analysis of the asymptotic behav-
ior of the Leslie population matrix model. Bulletin of Mathematical
Biology, 35:645–661, 1973.

[43] P. Cull and A. Vogt. The periodic limit for the Leslie model. Math-
ematical Biosciences, 21:39–54, 1974.

[44] P. Cull and A. Vogt. The period of total population. Bulletin of
Mathematical Biology, 38:317–319, 1976.

[45] Paul Cull. Stability in one-dimensional models. Scientiae Mathemat-
icae Japonicae, 58:349–357, 2003.

[46] G. Dalquist and A. Bjorck. Numerical Methods. Prentice-Hall, En-
glewood Cliffs, NJ, 1974.

[47] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra. Chap-
man and Hall, San Diego, CA, 1988.

[48] A. de Moivre. Miscellanea Analytica. Londini, excudebant J. Tonson
& J. Watts, London, 1730.

[49] R. Descartes. Discourse on Method. Penguin, New York, NY, 1968.

[50] R. Descartes. Meditations. Penguin, New York, NY, 1968.

[51] R. Devaney. An Introduction to Chaotic Dynamical Systems. Ben-
jamin, Redwood City, CA, 1986.

[52] P. Diaconis, M. McGrath, and J. Pitman. Riffle shuffles, cycles, and
descents. Combinatorica, 15:11–29, 1995.

[53] L. E. Dickson. Linear Algebraic Groups and an Exposition of Galois
Theory. Dover Publications, New York, NY, 1958.

[54] D. M. Dubois, editor. Computing Anticipatory Systems: CASYS’99
— Third International Conference . Conference Proceedings 517,
American Institute of Physics, Woodbury, N.Y., 2000.

[55] D. M. Dubois, editor. Computing Anticipatory Systems: CASYS
2001 — Fifth International Conference . Conference Proceedings
627, American Institute of Physics, Woodbury, N.Y., 2002.

References 373

[56] F. Dyson and H. Falk. Period of a discrete cat mapping. American
Mathematical Monthly, 99:603–614, 1992.

[57] J. Eichenauer-Hermann. Inversive congruential pseudorandom num-
bers avoid the planes. Mathematics of Computation, 56:297–301,
1991.

[58] S. E. Eldridge and C. D. Walter. Hardware implementation of Mont-
gomery’s modular multiplication algorithm. IEEE Transactions on
Computers, 42:693–699, 1993.

[59] P. Erdős. On almost primes. American Mathematical Monthly,
57:404–407, 1950.

[60] L. Euler. Novi Commentarii Academiae Scientiarum Imperalis
Petropolitanae, 7:13–14, 1758–1759.

[61] L. Euler. Introduction to Analysis of the Infinite. Springer-Verlag,
New York, NY, 1988. Translated by J. D. Blanton.

[62] W. Feller. An Introduction to Probability Theory and its Applications.
John Wiley, New York, NY, 1968.

[63] M. E. Fisher, B. S. Goh, and T. L. Vincent. Some stability conditions
for discrete-time single species models. Bulletin of Mathematical Bi-
ology, 41:861–875, 1979.

[64] M. Flahive and H. Niederreiter. On inversive congruential genera-
tors for pseudorandon numbers. Lecture Notes in Pure and Applied
Mathematics, 141:75–80, 1993.

[65] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial
Number Theory. Princeton University Press, Princeton, NJ, 1981.

[66] É. Galois. Oeuvres Mathématiques. Gauthier-Villars, Paris, France,
1897.

[67] F. R. Gantmacher. The Theory of Matrices. Chelsea Publishing
Company, New York, NY, 1959.

[68] M. Garey and D. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Francisco,
1979.

[69] F. Garvin. The Maple Book. Chapman and Hall, Boca Raton, FL,
2002.

[70] C. F. Gauss. Disquisitiones Arithmeticae. Springer-Verlag, New
York, NY, 1986.

374 References

[71] B. S. Goh. Management and Analysis of Biological Populations. El-
sevier, New York, NY, 1979.

[72] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathemat-
ics: A Foundation for Computer Science. Addison-Wesley, Reading,
MA, 1994.

[73] R. T. Gregory. Methods and Applications of Error-Free Computation.
Springer-Verlag, New York, NY, 1984.

[74] R. Guy. How to factor a number. Congressus Numerantium, 16:49–
89, 1976.

[75] M. A. Harrison. Lectures on Linear Sequential Machines. Academic
Press, New York, NY, 1969.

[76] M. P. Hassel. Density dependence in single species populations. Jour-
nal of Animal Ecology, 44:283–296, 1974.

[77] R. Herken, editor. The Universal Turing Machine. Oxford University
Press, Oxford, UK, 1988.

[78] K. Hoffman and R. Kunze. Linear Algebra (second edition). Prentice-
Hall, Englewood Cliffs, NJ, 1971.

[79] J. L. Holloway. Algorithms for Computing Fibonacci Numbers
Quickly. MS thesis, Computer Science, Oregon State University, Cor-
vallis, OR, 1989.

[80] C. Hooley. On Artin’s conjecture. J. Reine Angew. Math, 226:209–
220, 1967.

[81] Y. N. Huang. A counterexample for P. Cull’s theorem. Kexue Tong-
bao, 31:1002–1003, 1986.

[82] D. Kalman. The generalized Vandermonde matrix. Mathematics
Magazine, 57:15–21, 1984.

[83] J. Keller. How many shuffles to mix a deck? SIAM Review, 37:88–89,
1995.

[84] A. Knight. Basics of MATLAB and Beyond. Chapman and Hall,
Boca Raton, FL, 2000.

[85] D. Knuth. Big Omicron and Big Omega and Big Theta. SIGACT
News, 8:18–24, April-June 1976.

[86] D. Knuth. Selected Articles on Analysis of Algorithms, pages 35–42.
Addison-Wesley, Reading, MA, 2000.

References 375

[87] D. Knuth. All questions answered. Notices of the American Mathe-
matical Society, 49:318–324, 2002.

[88] D. E. Knuth. The Art of Computer Programming. Addison-Wesley,
New York, NY, third edition, 1997.

[89] R. J. Kooman. Convergence Properties of Recurrence Sequences.
Centrum voor Wiskunde en Informatica, Amsterdam, The Nether-
lands, 1991.

[90] T. Koshy. Fibonacci and Lucas Numbers. Wiley-Interscience, New
York, NY, 2001.

[91] G. Lamé. Extrait d’une lettre de M. Lamé à M. Liouville sur cette
question: un polygone convexe étant donné, de combien de manières
peut-on le partager en triangles au moyen de diagonales? J. Math.
Pures Appl., 3:505–507, 1838.

[92] J. P. LaSalle. The Stability of Dynamical Systems. SIAM, Philadel-
phia, PA, 1976.

[93] H. Lebesgue. L’oeuvre mathématique de Vandermonde.
L’Enseignement mathématique (2), 1:203–223, 1956.

[94] D. H. Lehmer. Mathematical methods in large-scale computing units.
In Proceedings of the Second Symposium on Large-Scale Digital Com-
puting Machinery, pages 141–146. Harvard University Press, Cam-
bridge, MA, 1951.

[95] P. H. Leslie. On the use of matrices in certain population mathemat-
ics. Biometrika, 33:183–212, 1945.

[96] H. Levy and F. Lessman. Finite Difference Equations. Dover, New
York, NY, 1992.

[97] T-Y. Li and J. Yorke. Period three implies chaos. American Mathe-
matical Monthly, 82:985–992, 1975.

[98] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University
Press, Cambridge, England, 1997.

[99] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, New York, NY, 1995.

[100] E. N. Lorenz. Deterministic non-periodic flows. J. Atmos. Sci.,
20:130–141, 1963.

[101] A. J. Lotka. Elements of Mathematical Biology. Dover Publications,
New York, NY, 1956.

376 References

[102] U. Manber. Introduction to Algorithms: A Creative Approach.
Addison-Wesley, Reading, MA, 1989.

[103] M. Marcus and H. Minc. A Survey of Matrix Theory and Matrix
Inequalities. Allyn and Bacon, Rockleigh, NJ, 1964.

[104] M. Marden. Much ado about nothing. American Mathematical
Monthly, 83:788–798, 1976.

[105] M. Marden. The Geometry of the Zeros of a Polynomial in a Complex
Variable. American Mathematical Society, New York, NY, 1989.

[106] G. Marsaglia. Random numbers fall mainly in the planes. Proceed-
ings of the National Academy of Sciences, U.S.A., 61:25–28, 1968.

[107] G. Marsaglia. The structure of linear congruential sequences. In
Applications of Number Theory to Numerical Analysis, pages 249–
285. Academic Press, New York, NY, 1972.

[108] Y. V. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, Cam-
bridge, MA, 1993.

[109] R. M. May. Biological populations with nonoverlapping generations:
stable points, stable cycles, and chaos. Science, 186:645–647, 1974.

[110] R. M. May. Simple mathematical models with very complicated dy-
namics. Nature, 261:459–467, 1976.

[111] J. McCarthy. The Tower of Stanford (problem 10956). American
Mathematical Monthly, 111:364–365, 2004.

[112] K. Mehlhorn. Data Structures and Algorithms. Springer-Verlag, New
York, NY, 1984.

[113] L. M. Milne-Thomson. The Calculus of Finite Differences. Macmil-
lan, London, 1933.

[114] L. Monier. Evaluation and comparison of two efficient probabilistic
primality testing algorithms. Theoret. Comput. Science, 12:97–108,
1980.

[115] P. L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44:519–522, 1985.

[116] P. A. P. Moran. Some remarks on animal population dynamics. Bio-
metrics, 6:250–258, 1950.

[117] T. Muir. The Theory of Determinants in the Historical Order of
Development, volume 3. Dover Publications, New York, NY, 1960.

References 377

[118] H. Neiderreiter. Quasi-Monte Carlo methods and pseudorandom
numbers. Bulletin of the American Mathematical Society, 84:957–
1041, 1978.

[119] H. Niederreiter. Random Number Generation and Quasi-Monte
Carlo Methods. SIAM, Philadelphia, PA, 1992.

[120] I. Niven. Diophantine Approximations. Interscience Publishers, New
York, NY, 1963.

[121] I. Niven. Formal power series. American Mathematical Monthly,
76:871–889, 1969.

[122] A. Nobile, L. M. Ricciardi, and L. Sacerdote. On Gompertz growth
model and related difference equations. Biological Cybernetics,
42:221–229, 1982.

[123] V. Ya. Pan. On methods of computing polynomial values. Russian
Mathematical Surveys, 21:105–137, 1966.

[124] F. Parker. Inverses of Vandermonde matrices. American Mathemat-
ical Monthly, 71:410–411, 1964.

[125] T. S. Parker and L. Chua. Practical Numerical Algorithms for
Chaotic Systems. Springer-Verlag, New York, NY, 1989.

[126] C.J. Pennycuick, R.M. Compton, and L. Beckingham. A computer
model for simulating the growth of a population, of two interacting
populations. Journal of Theoretical Biology, 18:316–329, 1968.

[127] P. Petersen. On computing maximal lattice dimensions of the inver-
sive congruential generator. MS thesis, Mathematics, Oregon State
University, Corvallis, OR, 1998.

[128] J. M. Pollard. A Monte Carlo method for factorization. BIT, 15:331–
334, 1975.

[129] G. Pólya. How to Solve It. Princeton University Press, Princeton,
NJ, 1945.

[130] G. Pólya. On picture writing. American Mathematical Monthly,
63:689–697, 1956.

[131] W. H. Press. Numerical Recipes: The Art of Scientific Computing.
Cambridge University Press, New York, NY, 1986.

[132] M. Rabin. Probabilistic algorithm for testing primality. J. Number
Theory, 12:128–138, 1980.

378 References

[133] L. M. Ricciardi, editor. Biomathematics and Related Computational
Problems. Kluwer, Dordrecht, 1988.

[134] L. M. Ricciardi, editor. Lectures in Applied Mathematics and Infor-
matics. Manchester University Press, Manchester, UK, 1990.

[135] W. E. Ricker. Stock and recruitment. Journal of the Fisheries Re-
search Board of Canada, 11:559–623, 1954.

[136] R. H. Risch. The problem of integration in finite terms. Transactions
of the American Mathematical Society, 139:167–189, 1969.

[137] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21:145–152, 1978.

[138] H. Rogers. Theory of Recursive Functions and Effective Computabil-
ity. McGraw-Hill, New York, NY, 1967.

[139] K. H. Rosen. Elementary Number Theory and its Applications.
Addison-Wesley, Reading, MA, 1993.

[140] G. Rosenkranz. On global stability of discrete population models.
Mathematical Biosciences, 64:227–231, 1983.

[141] J. J. Rotman. Advanced Modern Algebra. Prentice-Hall, Upper Sad-
dle River, NJ, 2002.

[142] D. G. Saari and J. B. Urenko. Newton’s method, circle maps, and
chaotic motion. The American Mathematical Monthly, 91:3–18, 1984.

[143] A. Salomaa. Automata–theoretic Aspects of Formal Power Series.
Springer-Verlag, New York, NY, 1978.

[144] A. Sarkovskii. Coexistence of cycles of a continuous map of a line to
itself. Ukr. Mat. Z., 16:61–71, 1964.

[145] A. Schonhage and V. Strassen. Schnelle Multiplikation grosser
Zahlen. Computing, 7:281–292, 1971.

[146] E. Seneta. Non-negative Matrices. John Wiley & Sons, New York,
NY, 1973.

[147] L. Sigler. Fibonacci’s Liber Abaci. Springer-Verlag, New York, NY,
2002.

[148] D. Singer. Stable orbits and bifurcation of maps of the interval.
SIAM Journal on Applied Mathematics, 35(2):260–267, Sept. 1978.

[149] D. Smith and M. Latham. The Geometry of René Descartes. Open
Court Publishing Company, Chicago, IL, 1925.

References 379

[150] J. M. Smith. Mathematical Ideas in Biology. Cambridge University
Press, Cambridge, 1968.

[151] J. M. Smith. Models in Ecology. Cambridge University Press, Cam-
bridge, 1974.

[152] R. P. Stanley. Generating functions. In Studies in Combinatorics,
pages 100–141. Mathematical Association of America, Washington,
D.C., 1978.

[153] R. P. Stanley. Enumerative Combinatorics, volume 1. Wadsworth &
Brooks/Cole, Monterey, CA, 1986.

[154] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge
University Press, New York, NY, 1999.

[155] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis.
Springer-Verlag, New York, NY, 1993.

[156] V. Strassen. Gaussian elimination is not optimal. Numer. Math,
13:354–356, 1969.

[157] A. Tarski. Logic, Semantics, Metamathematics. Oxford University
Press, Oxford, England, 1956.

[158] R. Taylor and A. Wiles. Modular elliptic curves and Fermat’s Last
Theorem. Annals of Mathematics (2), 141:443–551, 1995.

[159] A. Tucker. Applied Combinatorics. John Wiley, New York, NY, 2002.

[160] J. B. Urenko. Improbability of nonconvergent chaos in Newton’s
method. Journal of Mathematical Analysis and Applications, 117:42–
47, 1986.

[161] S. Utida. Population fluctuation, an experimental and theoretical
approach. Cold Spring Harbor Symposium on Quantitative Biology,
22:139–151, 1957.

[162] A. van der Poorten. Notes on Fermat’s Last Theorem. John Wiley
& Sons, New York, NY, 1996.

[163] J. Vinson. The relation of the period modulo m to the rank of appari-
tion of m in the Fibonacci sequence. Fibonacci Quarterly, 1:37–45,
1963.

[164] N. N. Vorobev. Fibonacci Numbers. Blaisdell, New York, NY, 1961.

[165] D. D. Wall. Fibonacci series modulo m. American Mathematical
Monthly, 67:525–532, 1960.

380 References

[166] C. D. Walter. Systolic modular multiplication. IEEE Transactions
on Computers, 42:376–378, 1993.

[167] C. D. Walter. Space/time trade-offs for higher radix modular multi-
plication using repeated addition. IEEE Transactions on Computers,
46:139–141, 1997.

[168] A. Wiles. Ring-theoretic properties of certain Hecke algebras. Annals
of Mathematics (2), 141:553–572, 1995.

[169] H. S. Wilf. generatingfunctionology. Academic Press, New York, NY,
1990.

[170] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon
Press, Oxford, England, 1965.

[171] Jet Wimp. Computation with Recurrence Relations. Pitman, Boston,
MA, 1984.

[172] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

[173] A. Wiseman and T. P. Wiseman. De bello Gallico. English. D.R.
Godine, Boston, MA, 1980.

[174] S. Wolfram. Mathematica. Addison-Wesley, Redwood City, CA,
1988.

[175] S. Wolfram. A New Kind of Science. Wolfram Media, Champaign,
IL, 2002.

[176] O. Wyler. On second-order recurrences. American Mathematical
Monthly, 72:500–506, 1965.

[177] N. Zierler. Linear recurring sequences and error-correcting codes. In
Error-Correcting Codes, pages 47–59. Wiley, New York, NY, 1968.

Index

17-year locusts, 144, 174

abelian group, 225, 348
absolute convergence, 349
absolute error convergence, 114,

142, 169
absolute value, 63, 310
adjacency matrix, 189
age

class, 139
distribution, stable, 143, 169

algorithm, 253
analysis of, 254
divide-and-conquer, 263, 268,

270
division, 274
FFT, 274
FFT-Poly-Mult, 282
FIB, 4
HANOI, 257
Horner, 118
iterative, 4, 260
Marden, 365
Newton, 119
POWER, 200

primitivity, 203
random, 287
RECRFIB, 4
recursive, 267
recursive multiply, 267
solution, 17
SORT, 291
square root, 274
Strassen, 272
strong connectedness, 202

analysis
asymptotic, 6
of algorithms, 254

aperiodic orbit, 303, 329
aperiodic polynomial, 106
aperiodic trajectory, 329
approximation, linear, 174, 308,

310, 316
argument of complex number, 348
arithmetic model of computing,

264
Artin’s conjecture, 231
asymptotic

analysis, 6

382 Index

behavior, 25, 143, 149, 171,
318

distribution, 187
period, 147
property, 302
size, 125

asymptotically one–dimensional, 187
asymptotically periodic matrix, 146
attractive

cycle, 302
distribution, 326
fixed point, 302

average case, 284
Averaging Theorem, 168

basis, 14, 354
ordered, 356

behavior
asymptotic, 25, 143, 149, 171,

318
best case, 284
Big-Oh, 7
Big-Omega, 7
Big-Omicron, 7
Big-Theta, 7, 255
bijection, 13, 248
binary operation, 262
binary representation, 261, 304
Binet’s Formula, 5, 28, 73, 101
binomial coefficient, 70, 183

generalized, 56, 98
Binomial Theorem, 70, 192, 247

Generalized, 56
biorthogonal, 26
Birthday Problem, 250, 251
Bisection Method, 116
bit reversal permutation, 278
bit vector representation, 193
Boolean

operations, 191
matrix, 191, 200

bounded orbit, 305
breadth-first search, 202
butterfly effect, 303

Caesar, Julius, 263
Canonical Form

Jordan, 16, 183, 209, 357
Rational, 21, 210

card shuffle
perfect, 248
riffle, 248

Carmichael numbers, 243
Catalan number, 83
Cauchy sequence, 63

of polynomials, 63
Cayley–Hamilton Theorem, 145,

181
Cayley-Hamilton Theorem, 148, 177,

188, 359
ceiling function, xii, 8
cellular automata, 332
census information, 166
change of basis matrix, 356
chaos, 303, 324
characteristic of a field, 229, 246
characteristic polynomial, 145, 153

of a matrix, 185, 357
of a recurrence, 18

cicadas, 144, 174
Clark, Arthur C., 291
column eigenvector, 26
combination, linear, 353
companion form, 153
companion matrix, 16, 147, 181,

210
of a polynomial, 16
of a recurrence, 16, 232, 249

complete metric space, 64
completing the square, 235
complex number, xii, 348

argument of, 348
imaginary part of, 348
modulus of, 348
real part of, 348

complex vector space, 353
complexity of

arithmetic operations, 261
Euclidean Algorithm, 142, 174
graph search algorithms, 202

Index 383

matrix operations, 200
polynomial interpolation, 275

compositeness test, 242
connectedness

in a graph, 197
convergence

absolute, 349
absolute error, 114, 142, 169
monotone, 314
non-monotone, 315
of a matrix sequence, 146
quadratic, 119
radius of, 349
relative error, 114, 142, 144,

169
convergent series, 349
convolution, 51, 61, 84, 264
coordinatization of vectors, 355
cost criterion

logarithmic, 259
uniform, 257

countable set, 306
coupled system, 149
CPU time, 254
cryptosystem

RSA, 224, 242
cycle, 302

attractive, 302
length, 302
locally stable, 309
repelling, 302

cyclic subspace, 21
cyclotomic

numbers, 351
cyclotomic polynomial, 323

DAG, 197, 213
density function, 327
depth-first search, 202
derangement, 99
Descartes, 263
Descartes’ Rule of Signs, 102, 103
determinant

of a linear fractional recur-
rence, 318

of a matrix, 148
deterministic generators, 238
deviation of an approximation, 107
DFT, 277
diagonalizable, 16, 357

orthogonally, 26
diagonalization, 320
difference equation, 3, 266

constant coefficient, 34
coupled system, 149
divide-and-conquer, 287
finite, 33
generalized Fibonacci, 110
homogeneous, 71
homogeneous linear, 11
homogeneous matrix, 179, 206
homogeneous nonnegative, 125
Leslie, 186, 196
linear, 3, 33, 337
linear fractional, 317
linear modular, 227, 232, 238
matrix, 179

homogeneous, 179, 206
nonhomogeneous, 206

modular, 217
modular nonhomogeneous, 221
nonhomogeneous, 35, 41, 74
nonhomogeneous matrix, 206
nonhomogeneous nonnegative,

127
nonlinear, 297
nonnegative, 101, 125
nonnegative matrix, 197
nonnegative, nonhomogeneous,

127
periodic, 127
rational linear fractional, 322
system of, 312

differential equations, 35
differentiation

formal, 55, 64
operator, 48

dimension
lattice, 239
vector space, 355

384 Index

Dirac Delta function, 62
directed edge, 189
directed graph, 189

acyclic, 197
discrete dynamical system, 299
Discrete Fourier Transform, 277
discriminant

of a linear fractional recur-
rence, 318

distribution
attractive, 326
invariant, 326
inverted pyramid, 143, 166,

169, 173, 178
population, 142
stable age, 143, 169

divide-and-conquer
algorithm, 263, 268, 270
recurrence, 268, 287

division
integer, 262, 274
polynomial, 227, 247

Division Algorithm
for polynomials, 77

divisor sequence, 210
dominant eigenvalue, 27, 157, 186
dominant root, 104, 361

estimation of, 113
dynamical system

discrete, 299

eigenmatrix, 150
eigenvalue, 16, 311, 337, 356

dominant, 27, 113, 157, 186
of a linear fractional system,

320
of a recurrence, 18
strictly dominant, 27, 152, 186

eigenvector, 356
column, 26
generalized, 27, 185
row, 26

equivalence class, 85
equivalence mod 1, 304
equivalence relation, 63, 197

ergodic theorem, 329
ergodicity, 329
error

absolute, 114, 142, 169
relative, 114, 142, 144, 169

Euclidean Algorithm, 142, 174, 204,
222, 223, 239

for polynomials, 77, 95
Euclidean norm, 187
Euler Phi Function, 223, 323
Euler’s formula, 352
evaluation of a polynomial, 275
eventually periodic, 219, 228, 244,

301, 334
exponential

function,complex, 349
generating function, 99
power series, 65

factorization of integers
Monte Carlo Method, 244
Pollard Rho Method, 244

fast exponentiation, 181, 192, 199,
200, 230, 241

Fast Fourier Transform, 87, 274
Fermat Test, 243
Fermat’s Last Theorem, 229
Fermat’s Little Theorem, 229
fertility rates, 138, 196
FFT, 87, 274
Fibonacci, 2
Fibonacci function, 3

modular, 218, 220
Fibonacci matrix, 181
Fibonacci numbers, 335

programs for, 4
Fibonacci period, 233, 236, 249
Fibonacci sequence, 1, 2, 9, 14,

71, 101, 174, 181, 335
generalized, 97, 101, 110, 116,

132, 362
modular, 218, 233, 249

field
characteristic of, 229, 246
finite, xii, 225, 236, 247

Index 385

Galois, 227
of complex numbers, 348

finite difference equation, 33
finite field, xii, 225, 236, 247
finite-dimensional vector space, 355
finiteness argument, 51, 62

extended, 54
fixed point, 218

attractive, 302
globally stable, 313
locally stable, 307
repelling, 302
stable, 298
unstable, 298

floor function, xii, 8
Floyd’s method, 244
forcing function, 34
formal derivative, 55, 64
formal power series, 50

algebraic properties of, 52
Four Russians’ method, 200
Fourier matrix, 279

inverse, 295
Fourier Reversion Method, 94
Fourier Transform, 87, 274
full solution, 59
function, 33

bijective, 13, 248
ceiling, 8
complex exponential, 349
density, 327
Dirac Delta, 62
Euler Phi, 323
Fibonacci, 4
Fibonacci modular, 218, 220
floor, 8
forcing, 34
generating, 67, 70

exponential, 99
indicator, 329
input, 34
iterates of, 218, 302
Liapunov, 313
linear, 33
one-to-one, 13, 273

onto, 13
rational, 76
reciprocal, 273

Fundamental Theorem of Algebra,
76, 352

Galois field, 227
Gauss, Carl Friedrich, 104, 231,

352
gcd, 133, 223

computing, 205
for polynomials, 78, 95

general solution, 38
generalized eigenvector, 185
generalized Fibonacci

polynomial, 362
sequence, 97, 101, 110, 116,

362
Generalized Riemann Hypothesis,

231, 243
generating function, 67, 70

exponential, 99
polynomial, 70
reversion of, 87
technique, 82

geometric power series, 55
globally stable fixed point, 313
golden section, 5
graph

connected, 197
corresponding to a matrix, 141,

159
directed, 189
directed acyclic, 197
primitive, 203
representation of, 193
searching, 193
strongly connected, 141, 191

group, 247
abelian, 225, 348

growth of solution, 185

Hamiltonian circuit problem, 203
histogram, 329
homogeneous

386 Index

difference equation, 206
recurrence, linear, 11

Horner’s method, 117, 151, 170
hyperplane, 49

imaginary numbers, 347
imaginary part, 348
imprimitivity, 105
independence, linear, 28, 153, 354
index of imprimitivity, 105, 160,

196
indicator function, 329
infinite-dimensional vector space,

355
initial conditions, 3
initial value problem, 3, 11, 33
inner product, 171
input function, 34
integers, xii

addition of, 262
modulo m, x, xii, 217, 220,

223, 225, 232, 234, 244,
246

multiplication of, 263
relatively prime, 221

integers, factorization of
Monte Carlo Method, 244
Pollard Rho Method, 244

integral domain, 52, 54
interpolation

formula, 275
process, 275

interval map, 302
invariant distribution, 326
invariant property, 302
invariant subspace, 23
inverse Fourier matrix, 295
inversive generator, 239
inverted pyramid form, 143, 166,

169, 178
invertible element, 54, 222
irreducible polynomial, 227
isomorphism

graph, 161
vector space, 13

iterate, 218, 302
iterative

program, 4
algorithm, 260

Jacobian matrix, 311
Jordan block, 183, 186, 209, 357
Jordan Canonical Form, 16, 183,

209, 357
Julius Caesar, 263

L’Hôpital’s Rule, 96
lattice dimension, 239
Lattice Test, 238
length of a cycle, 302
Leslie

matrix, 140, 164, 194, 196
model, 139
normal form, 214

Leslie’s Convergence Theorem, 142,
143, 169

Leverier’s Lemma, 177
Liapunov function, 313
Liber Abaci, 1, 7
linear

congruential generator, 238
function, 33
operator, 297, 355
recurrence, 3, 317
system, 317

linear approximation, 174, 308, 310,
316

linear combination, 353
linear fractional recurrence, 317

periodic, 325
rational, 322

linear independence, 28, 153, 354
linear operator, 37, 297
linear recurrence, 337
linear transformation, 355
locally stable

cycle, 309
fixed point, 307

logarithmic cost criterion, 259
Lucas numbers, 9, 59, 250

Index 387

Lucas, Édouard, 9, 291

map, 299
interval, 302

Marden’s method, 114, 362
Markov chain, 187, 198, 213
matrix

0-1, 190
adjacency, 189
asymptotically periodic, 146
Boolean, 191, 200
change of basis, 356
companion, 16, 147, 181, 210,

249
diagonalization, 320
Fibonacci, 181
Fourier, 279
generalized Vandermonde, 25,

29
inverse Fourier, 295
Jacobian, 311
Leslie, 140, 164, 194, 196
multiplication, 180, 200, 271
nonnegative, 197
operations, 272
periodic, 145
permutation, 161, 278
positive, 140
powers, 148, 181, 212
primitive, 141, 145, 198, 202
projection, 212
similar, 356
strongly connected, 195
transpose, 161, 180
Vandermonde, 19, 275, 276

matrix form, 16, 137, 180, 232,
319

matrix multiplication, 180, 200,
295

matrix norm, 153
matrix transpose, 161
maximal period, 230
MERGESORT, 272
metric space, 64

complete, 64

minimal polynomial, 145, 153, 181,
185, 359

mod 1, 304
model

arithmetic for computing, 264
Leslie, 139
population, 330

modular Fibonacci
function, 218, 220
sequence, 249

modular operations, 217
modulus of complex number, 348
monic polynomial, 76
monotone convergence, 314
monotonic operations, 200
Montgomery multiplication, 224,

246
multiplication

integer, 262
matrix, 180, 200, 271, 295
Montgomery, 224, 246
polynomial, 264, 270, 274, 281
power series, 51

natural number, xii
neighborhood, 310
neural nets, 332
neutrally stable point, 318
Newton’s method, 118, 142, 273,

333
convergence of, 121

Newton, Isaac, 352
next node representation, 193
nonhomogeneous, 35, 41, 127, 206,

221
nonhomogeneous recurrence, 74
nonlinear recurrence, 297
nonlinear system, 310
nonnegative

difference equation, 125
difference equation, nonhomo-

geneous, 127
polynomial, 102, 361
recurrence, 101, 125
recurrence, homogeneous, 125

388 Index

recurrence, nonhomogeneous,
127

norm
absolute value, 63
Euclidean, 187, 310
of a matrix, 153
of a vector, 144

normal numbers, 347
numbers

Carmichael, 243
Catalan, 83
cyclotomic, 351
Fibonacci, 2, 174, 335
Lucas, 9, 59, 250
normal, 347
Stirling, of the second kind,

85

one-to-one function, 13, 273
onto function, 13
operation

binary, 262
unary, 262

operator, 355
differentiation, 48
formal differentiation, 55, 64
invertible, 49, 95, 356
linear, 297
shift, 48, 56

orbit, 218
aperiodic, 303, 329
bounded, 305
periodic, 218

order
of a matrix, 233, 247, 249,

279
of a polynomial, 62
of a recurrence, 33
of a sequence, 63
of an element, 229, 230, 247,

279
orthogonally diagonalizable, 26
oscillation, 138, 144, 158, 169, 173,

298
Ouroboros, 257

partial fractions, 72, 76, 80
partial sum, 51
particular solution, 36, 38, 338
partition, 85
Pascal’s triangle, 70
path, 190

length, 190
simple, 190

perfect card shuffle, 248
period, 88

asymptotic, 147
Fibonacci, 236
of a modular recurrence, 230
of an orbit, 218

periodic
eventually, 219, 228, 301, 334
linear fractional recurrence,

325
matrix, 145
orbit, 218
point, 218, 302
polynomial, 106, 158
recurrence, 127
sequence, 88

permutation, 248
bit reversal, 278
derangement, 99

permutation matrix, 161, 278
Perron–Frobenius Theorem, 186
Perron-Frobenius Theorem, 194
Phi Function, Euler, 223, 323
Pisano, Leonardo, 1
plot

time, 300
web, 300, 327

Pollard Rho Method, 244
polynomial

aperiodic, 106
arithmetic, 226
characteristic, 145, 153
characteristic, of a matrix, 185,

357
characteristic, of a recurrence,

18
cyclotomic, 323

Index 389

dense, 274
evaluation, 275
generating function, 70
interpolation, 275
irreducible, 227
minimal, 22, 145, 153, 185,

359
modulo m, 244
monic, 76
multiplication, 264, 270, 274,

281
nonnegative, 102, 361
order of, 62
period, 158
periodic, 106
primitive, 106, 158, 361
reciprocal, 73, 362
reducible, 247
sparse, 274

polynomials
Cauchy sequence of, 63

population
total, 171

population model, 330
population distribution, 142
population vector, 169, 173
positive definite, 63
positive matrix, 140
power series

addition of, 51
exponential, 65
formal, 50
formal derivative of, 55
geometric, 55
invertible, 54
multiplication of, 51
partial sum of, 51
quadratic formula for, 61

poynomial
minimal, 181

primitive element, 230
Primitive Element Theorem, 231,

241
primitive graph, 203

primitive matrix, 141, 145, 198,
202

algorithms for, 198
primitive polynomial, 106, 158, 361
primitive root of unity, 87, 352
principal root of unity, 87, 276,

351
probabilistic method, 242
procedure

recursive, 257
product rule, 55, 65
program

divide-and-conquer, 268
division, 274
FFT, 274
FFT-Poly-Mult, 282
FIB, 4
HANOI, 257
Horner, 118
iterative, 4
Marden, 365
POWER, 200
RECRFIB, 4
recursive, 4
SORT, 291
square root, 274
Strassen, 272

projection matrix, 212
pseudoprime, 243
pseudorandom numbers, 238

deterministic generator, 238
inversive generator, 239
Lattice Test, 238
linear congruential generator,

238
pyramid form

inverted, 143, 166, 169

quadratic convergence, 119
quadratic formula, 61
quadratic reciprocity, 235
quadratic residue, 235
QUICKSORT, 286

Rabbit problem, 1, 137

390 Index

radius of convergence, 349
random algorithm, 287
random sequence, 238
rate

fertility, 138
survival, 138

Rational Canonical Form, 21, 210
rational function, 76
rational number, xii
real number, xii
real part, 348
real vector space, 353
reciprocal function, 273
reciprocal polynomial, 73, 94, 362
recurrence, 3, 266

constant coefficient, 34
divide-and-conquer, 268, 287
generalized Fibonacci, 110
homogeneous, 71
homogeneous linear, 11
homogeneous matrix, 179, 206
homogeneous nonnegative, 125
Leslie, 186, 196
linear, 3, 33, 337
linear fractional, 317
linear homogeneous, 11
linear modular, 227, 232, 238
matrix, 179

homogeneous, 179, 206
nonhomogeneous, 206

modular, 217
nonhomogeneous, 35, 41, 74,

221
nonhomogeneous nonnegative,

127
nonlinear, 297
nonnegative, 101, 125
nonnegative matrix, 197
nonnegative, nonhomogeneous,

127
periodic, 127
rational linear fractional, 322
relation, 3
system of, 312

recursive

algorithm, 253
definition, 4
procedure, 257
program, 4

reducible polynomial, 247
reduction, 159
relation

equivalence, 63, 197
relative error convergence, 114, 142,

144, 169
relatively prime integers, 221
repeated squaring, 181, 192, 199,

200, 230, 241
repelling

cycle, 302
fixed point, 302

representation
binary, 261

representation of a graph, 193
Reversion Formula, 90
reversion of generating functions,

87
Riemann Hypothesis, Generalized,

231
robustness, 260
root

calculating, 116
dominant, 104, 113, 157, 361
strictly dominant, 106, 152,

361
root of unity, 87, 105, 168, 276,

322, 351
primitive, 87, 352
principal, 87, 276, 351

Round, 6, 101, 106
roundability, 6, 106, 110
Rounding Theorem, 110
row eigenvector, 26
RSA cryptosystem, 224, 242
run time, 254

average case, 284
best case, 284
worse case, 284

Sarkovskii’s Theorem, 302, 330

Index 391

Schönhage-Strassen algorithm, 263
search

breadth-first, 202
depth-first, 202

searching in a graph, 193
sensitive dependence, 303, 324
sequence, 2

Cauchy, 63
Fibonacci, 71, 174, 335
modular Fibonacci, 249
periodic, 88

series
convergent, 349
formal power, 50
geometric power, 55
invertible power, 54
power

exponential, 65
formal, 50

Taylor, 65, 120, 349, 350
shift operator, 48, 56
shuffle

riffle, 248
sign change, 102
similar matrices, 356
simple path, 190
sink, 197
solution

full, 59
general, 38
particular, 36, 38, 338

solution space, 13
source, 197
spanning set, 354
spiking behavior, 107
square roots, 124, 274
stable age distribution, 143, 169
stable fixed point, 298
Staircase Theorem, 314
steady state, 302
Stirling numbers of the second kind,

85
Strassen’s method, 201, 271
strictly dominant

eigenvalue, 27

root, 106, 152, 361
strings, 67

commuting, 293
nullstring, 67

strong connectedness, algorithm for,
193

Strong Fermat Test, 243
strong pseudoprime, 243
strongly connected

blocks, 197
graph, 141, 191
matrix, 195
test for, 202

Sturm’s Theorem, 104
subspace, 353

cyclic, 21
invariant, 23

superposition principle, 45
superstable point, 318
supremum of a set, 350
survival rate, 138
synthetic division, 118

Taylor series, 65, 120, 349, 350
time

CPU, 254
run, 254
unitless, 255
wall clock, 254

time plot, 300
Tolstoy, Leo, 297
total population, 171
Towers of Hanoi, 256, 289
trace of a matrix, 177
trajectory

aperiodic, 329
transpose of a matrix, 161, 180
trial division, 242
triangle inequality, 63
Turing machine, 263, 301, 332

unary operation, 262
uniform cost criterion, 257
unstable fixed point, 298

Vandermonde matrix, 19, 275, 276

392 Index

generalized, 25, 29
vector space, 353

complex, 353
finite-dimensional, 355
infinite-dimensional, 355
isomorphism, 13
real, 353

vector, coordinatization of, 355

wall clock time, 254
weather prediction, 305
web plot, 300, 327
Wiles, Andrew, 229
worse case, 284

Z-transforms, ix
zero divisor, 60

	Difference Equations
	Preface
	Computation
	Notational Preliminaries
	Contents
	1 Fibonacci Numbers
	2 Homogeneous Linear Recurrence Relations
	3 Finite Difference Equations
	4 Generating Functions
	5 Nonnegative Difference Equations
	6 Leslie’s Population Matrix Model
	7 Matrix Difference Equations
	8 Modular Recurrences
	9 Computational Complexity
	10 Some Nonlinear Recurrences
	Appendix A Worked Examples
	Appendix B Complex Numbers
	Appendix C Highlights of Linear Algebra
	Appendix D Roots in the Unit Circle
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

